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ABSTRACT 

Scientific (disunity) pluralism is the view according to which there is a plurality 
of scientific domains and of scientific theories, and these theories are empirically 
adequate relative to their own respective domains. Scientific monism is the view 
according to which there is a single domain to which all scientific theories apply. 
How are these views impacted by the presence of inconsistent scientific theories 
(in particular, theories that are inconsistent with one another)?  

There are (A) consistency-preservation strategies and (B) inconsistency-
toleration strategies. Among the former, two prominent strategies can be 
articulated: (A1) Compartmentalization and (A2) Information restriction. 
Among the inconsistency-toleration strategies, we have: (B1) Paraconsistent 
compartmentalization and (B2) Dialetheism. In this paper, I critically assess the 
adequacy of each of these four views.  
 
 

1. Introduction 
  
Scientific (disunity) pluralism is the view according to which there is a plurality 
of scientific domains of inquiry, a plurality of scientific theories, and these 
theories are empirically adequate relative to their own respective domains. 
Scientific monism is the view according to which there is a single domain of 
inquiry to which all scientific theories apply. 

It seems to me that any monist view faces considerable difficulties to make 
sense of contemporary science, where there is extremely little in common 
among different domains. Just consider how diverse the following theories and 
domains of scientific inquiry are: quantum field theory and pediatrics, 
molecular biology and cultural anthropology, biochemistry and sociological 
social psychology. They do not share goals, methods, theories, or approaches. 
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In fact, the only way of lumping them together in some coherent form is to 
consider them at such a high level of abstraction that very little of their actual 
content is preserved in the end. For instance, to insist that all (or even most) of 
the investigation of these domains involves the formulation of empirically 
testable theories, and that such a test has the overall structure of a modus tollens 
(as Popper (1934) insists) is precisely to navigate at an extraordinarily high level 
of abstraction, and to lose the most significant, specific details of the research 
being conducted in each particular domain. It is very hard to see how a monist 
picture can accommodate this salient feature of scientific practice, while doing 
justice to the specificity and content of each domain of inquiry. 

Given this plurality, it may happen that inconsistent theories end up being 
formulated within a particular domain of inquiry. The result is the occasional 
pursuit, articulation, and advancement of theories that are inconsistent with one 
another. A prominent case is, of course, the tension between quantum 
mechanics and relativity theory. This immediately raises the issue of how these 
views, scientific pluralism and scientific monism, are impacted by the presence 
of inconsistent scientific theories? In this paper, I provide a framework to 
consider this question. 

The framework has the following components: First, there are (a) 
consistency-preserving strategies and (b) inconsistency-tolerant strategies. 
Among the former, two prominent maneuvers can be articulated: (a1) According 
to compartmentalization, domains of inquiry to which mutually inconsistent 
scientific theories apply are compartmentalized, with no overlap between them, 
and in this way classical logic is preserved. (This generates a consistent disunity 
scientific pluralism.) (a2) According to information restriction, a single domain 
is maintained throughout the sciences, and any resulting inconsistency is 
eliminated by (somehow) extracting conflicting information (in more or less 
principled ways). As a result, once again, classical logic is preserved. (This yields 
a consistent scientific monist view.) 

Among the inconsistency-tolerant strategies, there are also two possibilities: 
(b1) According to paraconsistent compartmentalization, a plurality of 
overlapping domains is allowed for throughout the sciences. Since 
inconsistencies may emerge, a paraconsistent logic is then needed to avoid 
triviality, in light of classical logic’s explosive nature; that is, on this logic, 
everything follows from a contradiction. (This generates inconsistent scientific 
disunity pluralism.) (b2) According to dialetheism, all inconsistencies for which 
there is good evidence are taken to be part of a single scientific domain (Priest 
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2006a and 2006b). Once again, in light of the presence of inconsistencies, a 
paraconsistent logic is required. (This generates inconsistent scientific 
monism.) In what follows, I critically assess the adequacy of each of these four 
approaches. 
 

2. Inconsistent Scientific Theories 
 
When considering the issue regarding inconsistent scientific theories, four 
issues need to be addressed: (1) Are there, and can there be, such things as 
inconsistent scientific theories? (2) If so, how should they be accommodated? 
In particular, we should be able to understand the styles of reasoning involved in 
dealing with inconsistencies. (3) What are the sources of the inconsistencies? 
Do they emerge from empirical reasons, theoretical reasons, or by mistake? (4) 
Given the crucial role of mathematics in applications, how should we deal with 
inconsistent applied mathematical theories? What is the status of these theories? 
Which commitments (if any) do they bring? 

It may be argued that there cannot to be inconsistent (scientific or 
mathematical) theories. Or, at least, if inconsistent scientific theories existed, 
they could not be accommodated by classical philosophical conceptions of 
science. On the syntactic approach to scientific theories, a theory is a set of 
sentences closed under logical consequence (for a through discussion and 
references, see Suppe (1977). If the logic is classical, an inconsistent theory 
would be identical with the set of sentences of the language. Triviality then 
emerges. 

On the semantic approach to scientific theories, a theory is presented as a 
family of models (see, for instance, van Fraassen 1980 and 1989). If the logic is 
classical, an inconsistent theory would have no models. So, there would not be 
models of the theory in terms of which the theory could be presented. Again, 
there is no room for inconsistency here. 

In response, it can be argued that if inconsistent scientific theories cannot 
be accommodated by classical philosophical conceptions of science, this just 
shows that these conceptions are inadequate. We should change these 
conceptions so that they are able to accommodate the data. But which data? It 
has been assumed that there are inconsistent scientific theories. But are there in 
fact any? (See Vickers (2013) for a critical response.) We typically do not have 
scientific theories that are internally inconsistent. At best, we may have cases of 
theories that are inconsistent with other theories. But, at this point, the issue 
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becomes one of theory choice: which of the two theories is better supported by 
the evidence? Let us consider some well-known cases that have been suggested 
as providing support for inconsistent scientific theories. 
 

3. Bohr’s atomic model 
 
In 1913, Niels Bohr advanced his celebrated atomic model: the planetary model 
of the atom. According to this model, an atom has a nucleus around which 
electrons orbit, similarly to the configuration of a planetary system. From the 
start, the concern emerged as to whether such a model would be stable or 
whether the electrons orbiting in the atom would eventually lose their energy 
and crash into the nucleus. 

According to electrodynamics, the model is fundamentally unstable: the 
electrons would eventually collapse into the nucleus in a matter of seconds. Bohr 
was, of course, perfectly aware of this issue. In order to circumvent the difficulty, 
he introduced a postulate to the effect that the collapse would not happen: 
 

Energy radiation (within the atom) is not emitted (or absorbed) in the continuous 
way assumed in the ordinary electrodynamics, but only during the passing of the 
systems between different “stationary” states (Bohr (1913), p. 874). 

 
Of course, the matter here is not just to insist, in more or less ad hoc terms, 

that the system would remain stable. An effort was made to suggest a reason why 
the stability of the atom was not an issue. By invoking the notion of a “stationary” 
state, in which the continuous emission and absorption of energy radiation in 
the atom does not occur in the ordinary way described by electrodynamics, Bohr 
was able to insist that energy radiation takes place just between different 
“stationary” states. 

In the end, electrodynamics does apply, but only partially, that is, when the 
systems pass through various “stationary” states. At the “stationary” states 
themselves, however, energy radiation within the atom is not emitted (or 
absorbed) in the usual electrodynamic way. In fact, electrodynamics does not 
apply to these states. 

In light of these remarks, it could be argued that Bohr’s atomic model, 
strictly speaking, does not constitute a case of an internally inconsistent model, 
but at best it provides an instance of an inconsistency between two theories 
(broadly construed): Bohr’s model and electrodynamics. The issue then 
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becomes which of these theories should be preferred? 
One may wonder whether the matter is really one of theory choice. Each of 

the two theories (or, more precisely, both electrodynamic theory and Bohr’s 
model) had its own proper domain of application. Electrodynamics was unable 
to explain the wavelength of the hydrogen’s line emission spectrum, which, in 
turn, was beautifully accounted for by Bohr’s model. Moreover, Bohr does 
invoke electrodynamics to describe the shifts among different “stationary” 
states. Bohr’s innovation was to limit the domain of applicability of 
electrodynamics, emphasizing that the theory does not describe the behavior of 
“stationary” states. Bohr’s own model would account for that. In the end, we 
have here some division of explanatory labor. 

Furthermore, Bohr’s model is not internally inconsistent: it does not invoke 
any principle for which both its statement and its negation hold. In a sense, the 
model is not even inconsistent with electrodynamics; it just restricts the domain 
of application of that theory. If electrodynamics applied to the description of 
“stationary” states, Bohr’s model would be inconsistent with it. After all, the two 
offer incompatible accounts of the stability of the atom. However, if 
electrodynamics does not apply to the domain where the two would diverge, and 
it does not according to Bohr’s model, then the model will not be inconsistent 
with electrodynamic theory. After all, no inconsistency could be derived at this 
point. 

In other words, it seems that the inconsistency between electrodynamics and 
Bohr’s atomic model is only potential: had the application of the former not been 
restricted (thus leading to an unstable atomic structure), the theory and the 
model would be inconsistent with one another. As it turns out, however, in light 
of the way in which Bohr had set up his atomic model, the inconsistency 
apparently can be blocked (see also Vickers (2013), Chapter 3, for additional 
discussion). 
 

4. Dirac’s Delta Function 
 

Bohr’s maneuver of specifying a suitable domain of application for his atomic 
model vis-à-vis electrodynamics is analogous to a move that can be made to block 
the inconsistency of another alleged inconsistent object: Paul Dirac’s delta 
function. This is an “improper” function that Dirac (1958) employed to good 
effect in his work in the foundations of quantum mechanics in order to allow for 
the proper formulation of the position and momentum operators. It is a real-
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valued function (x) such that: 
 

(x)dx = 1 

(x) = 0, for x  0. 
 
One can think of it as a function that has value 0 throughout the real numbers, 

with the exception of an arbitrarily small domain around the origin; in that 
domain, the function’s value is so large that the integral over the domain is 1. In 
Dirac’s own words: 
 

To get a picture of (x), take a function of the real variable x  which vanishes 
everywhere except inside a small domain, of length  say, surrounding the 
origin x = 0, and which is so large inside this domain that its integral over this 
domain is unity (Dirac (1958), p. 58). 

 
The concern is that the delta function seems to violate a well-known result in 

analysis to the effect that any real-valued function whose value is 0 throughout 
its domain except for a single point has total integral also 0. Dirac was well aware 
that some care was needed when dealing with the delta function to prevent 
inconsistencies from emerging. As he insisted: 
 

(x) is not a quantity which can be generally used in mathematical analysis like 
an ordinary function, but its use must be confined to certain simple types of 
expression for which it is obvious that no inconsistency can arise (Dirac 
(1958), p. 58). 
 

The “types of expression” Dirac is considering here are integrals. As long as the 
function is used within an integral, the potential difficulties will not emerge. 
This results from a crucial property of the delta function: 
 

 f(x)(x)dx = f(0), 
 
where f(x) is any continuous function of x. In light of this property, it is not 
difficult to understand why the delta function has the features it has. Dirac is 
very clear about this point: 
 

We can easily see the validity of this equation from the above picture of (x). 
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The left-hand side of (the equation above) can depend only on the values of f(x) 
very close to the origin, so that we may replace f(x) by its value at the origin, 
f(0), without essential error (Dirac (1958), p. 59). 

 
The result is that a suitable elimination condition for the delta function is 

then devised. In this way, the function can be dispensed with as long as it is used 
under the proper conditions. Similarly to what goes on with Bohr’s atomic model, 
in which domain specification played a key role, the decisive feature to ensure 
the reliability of the delta function is the specification of the proper domain in 
which it can be used: inside integrals (for additional discussion and references, 
see Bueno (2005). 
 

5. The Early Differential and Integral Calculus: Infinitesimals 
 
The early formulation of the differential and integral calculus in terms of 
infinitesimals offers an additional case of a potentially inconsistent theory. 
Infinitesimals are positive numbers that are smaller than any number. They were 
very useful in the original articulation of the calculus. But due to their potentially 
inconsistent behavior, it is not surprising that their introduction has been 
controversial from the start. Even Leibniz, who introduced them, considered 
infinitesimals to be just “useful fictions” (Leibniz 1716): entities introduced for 
heuristic purposes and eventually eliminated (see Bueno (2007) for additional 
discussion). 

Infinitesimals can be put to some quite useful work in derivations (see 
Colyvan 2008). Consider, for instance, the differentiation of a polynomial of the 
form: f(x) = ax2 + bx + c. We have, by definition, of differentiation (with ‘’ 
taken as an infinitesimal): 
 

(Diff.) 𝑓′(𝑥) =
𝑓(𝑥+)−𝑓(𝑥)


 

 
By applying (Diff.) to the polynomial f above, we obtain: 
 

𝑓′(𝑥) =
𝑎(𝑥 + )2 + 𝑏(𝑥 + ) + 𝑐 − (𝑎𝑥2 + 𝑏𝑥 + 𝑐)


 

     
And via simple algebraic transformations, we then derive: 
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𝑓′(𝑥) =
2𝑎𝑥 + 2 + 𝑏


 

 
Now, since the infinitesimal  is strictly positive, we can divide by it. Thus, we 
obtain: 
 

f (x) = 2ax + b +  
 

However, given that the value of  is arbitrarily small, it can be taken to be zero. 
As a result, we get: 

 
f (x) = 2ax + b 

 
And this is, precisely, the correct result! 

So, in the same derivation, the infinitesimal was taken to be both different 
from zero and not different from zero, which is not consistent. Given how 
delicate such a kind of reasoning is, it is not surprising that Bishop Berkeley was 
so deeply puzzled by it in the Analyst (Berkeley 1734). Berkeley insisted that the 
case was hopeless, and in the Analyst bitterly complained against the 
introduction of infinitesimals precisely on these grounds. (For a contemporary 
response by paraconsistent logicians, see, for instance, Carnielli and Coniglio 
(2013).) 

Clearly, some care is needed here. If an infinitesimal  can be taken as zero 
in some contexts, we could have that: 
 

1 x  = 2 x  
 
And if we assume that  is non-zero, we could then divide by , and “establish” 
that: 
 

1= 2 (!). 
 
Thus, there is no doubt that some rules are needed to manipulate infinitesimals 
in order to avoid triviality. 

When Leibniz introduced, in 1684, the differential calculus in his Nova 
Methodus, he formulated the concept of differential without mentioning 
infinitesimals (for detailed discussions, see Bell (2005) and (2014), which I 
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follow here). In this way, he could try to avoid, at least in principle, foundational 
worries associated with these objects. His strategy was to devise explicit rules of 
differentiation, and implement what can be considered an “algebraic” approach 
to the subject. Interestingly enough, he never offered a proof of the rules, 
although in order to obtain these rules and eventually establish their validity, it 
is very likely that infinitesimals would have been invoked. The rules are: 

 
da = 0, where a is a constant; 

d(ax) = a dx, where a is a constant; 

d(x + y  z) = dx + dy  dz 

d(xy) = x dy + y dx 

d(x/y) = 𝑥 𝑑𝑦 −  𝑦 𝑑𝑥

𝑦2
 

d(xp) = pxp1dx, also for fractional p. 

 
These are, of course, precisely the familiar rules for the derivative, and it is 
striking that Leibniz managed to obtain them operating in a context that may 
have included inconsistencies (to the extent that infinitesimals were involved). 

On the surface, the rules may seem to be entirely infinitesimal-free. But it 
turns out that infinitesimals were still presupposed, given the particular 
interpretation of the formalism offered by Leibniz in terms of suitable curves. In 
fact, if a curve is determined by the variables x and y, then Leibniz took dx and 
dy to be infinitesimal differences, or differentials, between the values x and y. In 
this case, dx/dy was taken as the ratio of the two, and for Leibniz this is the slope 
of the curve at the corresponding point. Moreover, Leibniz’s definition of 
tangent uses infinitely small distances, which, once again, also presupposes 
infinitesimals (see Bell 2005 and 2014). However, in the end, by thinking about 
potentially inconsistent objects, Leibniz was eventually able not only to devise 
the correct rules for the differential calculus, but also to formulate them in a way 
that would, in principle, allow him to (attempt to) dispense with infinitesimals 
altogether. 

He was not alone in invoking these objects and eventually trying to dispense 
with them. In Section I of Book I of the Principia, Newton considers the status 
of quantities that differ by an infinitesimal; interestingly, he notes, they are 
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ultimately the same. (How can quantities that differ by anything, even an 
infinitesimal, be the same is, obviously, a delicate matter.) As he points out: 
 

Quantities, and the ratios of quantities, which in any finite time converge 
continually to equality, and before the end of that time approach nearer to each 
other than by any given difference, become ultimately equal (Newton 
(1687/1729), p. 42, Book I, Section I, Lemma I). 

 
Of course, there is a dynamical feature in this description. The quantities are 
converging and their rate of change is being considered: it is only in the long run 
that they become “ultimately equal”. But do they ever become the same? This is 
less clear. For the quantities to become equal, they need to be reified and 
considered not as varying, converging things. They need to be static objects. But 
static objects do not converge. However one considers the matter, the status of 
the quantities in question is rather delicate, to say the least. 

Later on, aware of the complexities and difficulties involved with the 
introduction of infinitesimals, Newton indicates the importance of dispensing 
with such objects: 
 

For demonstrations are shorter by the method of indivisibles; but because the 
hypothesis of indivisibles seems somewhat harsh, and therefore that method is 
reckoned less geometrical, I chose rather to reduce the demonstrations of the 
following propositions to the first and last sums and ratios of nascent and 
evanescent quantities, that is to the limits of those sums and ratios, and so to 
premise, as short as I could, the demonstration of those limits (Newton 
(1687/1729), p. 54, Book I, Section I, Scholium). 

 
Thus, similarly to Leibniz, Newton was also careful to devise a strategy to avoid 
troublesome infinitesimals. 

Among the three cases considered so far, namely, Bohr’s atomic model, 
Dirac’s delta function, and Leibniz’s and Newton’s early formulation of the 
calculus, due to the use of infinitesimals, it seems that it is the early calculus that 
provides the strongest case for the presence of inconsistency in science (or, 
more precisely, for the presence of inconsistency in a mathematical theory used 
in science). 
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6. Accommodating Inconsistent Theories 
 
It is controversial that the cases discussed above do involved inconsistencies. 
Peter Vickers, in particular, has challenged that any of the alleged cases of 
inconsistency in science are in fact so. On his view: 
 

We have seen that the number of significant inconsistencies which exist in real 
science is far less than has often been suggested. The main examples of 
significant inconsistencies in this thesis are the later Bohr theory of the atom, 
Newtonian cosmology, and (to a lesser extent) the early calculus and 
Kirchhoff’s theory of diffraction. But in each of these cases it is clear that 
scientists don’t avoid the conflict by changing their logic. As the case studies 
have shown, classical deductive logic is used. Nor does it seem plausible that 
scientists should handle these cases by changing their logic. All that might be 
said is that these cases can be reconstructed by changing the logic, but it is hard 
to see what understanding might be gained by such a reconstruction (Vickers 
(2013), p. 238). 

 
So, even if it turned out that there were cases of inconsistency in the sciences, 
the strategy to accommodate them, according to Vickers, would not involve 
changing the logic. 

Why would a change of logic be considered a plausible response to the 
presence of inconsistency in science? The concern, of course, is that if the 
underlying logic were classical, in the presence of an inconsistency, the result 
would be triviality: everything would follow. One of the purposes of conducting 
inquiry is precisely to determine for which items there is good evidence and for 
which items this is not the case. However, if everything follows from whatever 
assumptions one may start from (due to an inconsistency), it is not possible to 
make such a determination. For any given item, one would both have evidence 
for it and would not have evidence for it. After all, it would follow from the 
assumptions in question that there is such evidence. It would also follow that 
there isn’t. The result, of course, is triviality. 

How can such triviality be resisted? As is well known, in a paraconsistent 
logic, not everything follows from a contradiction. Thus, classical logic’s 
principle of explosion (according to which contradictions entail everything) 
does not hold (for details, see da Costa, Krause, and Bueno 2007). In this 
context, by changing the underlying logic, from classical to a paraconsistent, it 
is possible to block the triviality that emerges from the presence of inconsistency. 
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One could then explore the domain of the inconsistent, by reasoning about its 
various aspects in order to determine which pieces of information should be 
retained and which pieces eliminated so that consistency can be restored. 

But any change of underlying logic from classical to paraconsistent does 
constitute a move away from scientific practice. To the extent that there is an 
underlying logic in scientific practice, that logic is typically classical. If the goal 
is to understand relevant features of that practice, it is unclear how a change in 
logic would contribute to that task. Such a change ultimately amounts to the 
production of a different scientific practice, governed by a different logic (again, 
to the extent that there is an underlying logic in the practice of science to begin 
with). In this respect, Vickers’ complain above regarding the sort of 
understanding that would emerge from a change of logic does have a point. One 
needs to find something within scientific practice to properly accommodate the 
issue. 

But if there are inconsistent theories in science, how can they be 
accommodated? Let me briefly suggest four possible strategies. (a) First, there 
are consistency-preserving strategies: these strategies reject the acceptability of 
inconsistent scientific theories. Since classical logic is assumed, there cannot be 
such theories, even in principle, for logical disaster would then ensue. 

Two strategies are then implemented in the attempt to secure consistency:  
(a1) The first is compartmentalization: classical logic is maintained, and the 

domains of inquiry, to which scientific theories that are inconsistent with one 
another apply, are compartmentalized so that there is no overlap among them. 
This generates a consistent disunity pluralist view, given that the various 
domains do not overlap and no attempt is made to unify them. Given the lack of 
overlap among the different domains, consistency emerges. 

(a2) The second consistency-preserving strategy is information restriction: 
classical logic is also maintained, and a single domain is kept throughout. In 
order to eliminate inconsistencies, conflicting pieces of information are 
(somehow) jettisoned and extracted. This yields a consistent monist view, given 
that a single domain is posited and consistency is maintained by the elimination 
of contradictory bits of information. 

(b) But, second, there are also inconsistency-tolerant strategies. These 
strategies recognize the possibility of inconsistent scientific theories. Since 
inconsistencies are tolerated, some paraconsistent logic needs to be invoked. 

Two strategies are then implemented.  (b1) The first is paraconsistent 
compartmentalization: there are inconsistent but non-trivial scientific theories, 
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given that a paraconsistent logic is assumed. Since a plurality of overlapping 
inconsistent domains is allowed for, this generates inconsistent disunity 
pluralism. 

(b2) The second inconsistency-tolerant strategy is dialetheism, according to 
which some contradictions are true (Priest 2006a and 2006b). A paraconsistent 
logic is adopted, and all inconsistencies for which there is good evidence are 
taken to be part of a single scientific domain. This yields inconsistent monism. 

As it turns out, however, all of these strategies to accommodate inconsistent 
theories face difficulties. I will consider them in turn. 

(a) As opposed to the consistency-preserving strategies, some of the data 
from scientific practice seem to support the existence of inconsistent scientific 
theories. As noted above, infinitesimals do seem to have inconsistent properties. 
And consistent versions of theories invoking infinitesimals, for instance, in 
terms of nonstandard analysis (Robinson 1974), do not properly capture the 
original formulation of the theory (for instance, the simplicity of the original 
infinitesimals is lost). Moreover, as is well known, quantum mechanics and 
relativity theory are mutually inconsistent. The fact that two of the major 
theories of physics are not consistent with one another provides good reason to 
take seriously inconsistency in the sciences. 

(a1) Contra compartmentalization, crucial information may be lost when the 
compartmentalization is implemented. Some contexts may require information 
in overlapping domains. For instance, what happens to quantum particles when 
they are subjected to huge gravitational fields? Furthermore, 
compartmentalization can be ad hoc if it is devised just to avoid inconsistencies 
without also providing some independent motivation. Crucial information may 
be lost in this way. 

There is, however, one benefit:  compartmentalization may lead to pluralism 
given that it allows for various domains, and that is a significant feature of 
contemporary sciences. 

(a2) As opposed to information restriction, once again, crucial information 
may be lost when some bits of information are extracted to preserve consistency. 
The extraction can also be ad hoc. If it is implemented just to avoid inconsistency 
and with no independent motivation, its epistemic value is limited in light of the 
cost of information loss. Moreover, sometimes the only way to obtain new 
information is to explore theories inconsistent with accepted ones. Consider 
what Galileo did in light of the accepted Aristotelian theory of his time: he was 
advancing theories that were in direct conflict with what was accepted at the time 
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(see Feyerabend, 1993). Thus, strategies that involve information restriction 
can be highly ineffective. This strategy can also lead to a form of monism, with a 
single consistent domain, which in fact conflicts with the practice of 
contemporary sciences. 

(b) But there are also significant costs associated with inconsistency-tolerant 
moves. (b1) Paraconsistent compartmentalization ultimately generates a form of 
anachronism. There was no paraconsistent logic available in the 17th century 
during the development of the calculus. At best, we have a framework to 
represent an artificial reconstruction of the reasoning invoked with the 
introduction of infinitesimals. The actual reasoning needs to be left behind. 
Moreover, the underlying logic is hardly ever made explicit in scientific practice, 
which results in a highly idealized strategy. 

There is one benefit, however: this strategy allows for a plurality of 
overlapping domains, and this pluralism jibes well with contemporary sciences. 

(b2) Contra dialetheism, it is unclear that scientific theories have ever been 
embraced on the grounds that they yield true contradictions. Nowhere in 
scientific practice is this strategy in fact implemented. Moreover, this would lead 
to a monist view, which also does not mesh well with the facts about scientific 
practice. Furthermore, dialetheism is ultimately not needed. A paraconsistent 
strategy would allow one to explore inconsistent information that may emerge 
from scientific theories without triviality, with no need to arbitrarily eliminate 
some bits of information, and without the commitment to true contradictions. 
This, in principle, provides a possible middle ground. However, the 
paraconsistent strategy still faces the difficulties raised above. 

Perhaps by taking seriously some of the relevant details of scientific practice 
an alternative framework to make sense of inconsistent scientific theories could 
be suggested. The idea is to adopt two complementary strategies, both of which 
are extensively invoked in scientific practice and illustrated in the case studies 
above, namely, dispensability and domain restriction. In light of inconsistencies, 
one could restrict the relevant domain to avoid inconsistency, but maximizing 
the amount of consistent information available and ultimately dispensing with 
the inconsistent objects. 

In the case of infinitesimals, as noted above, they are ultimately dispensable 
(both Leibniz and Newton suggested ways of dispensing with them). In the case 
of Bohr’s atomic model, we found the use of domain restriction to avoid 
inconsistency. Finally, in the case of the delta function, both domain restriction 
and dispensability were employed. Perhaps by skillfully combining these moves 
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a more effective way of dealing with inconsistency in sciences could be 
implemented? 
 

7. Conclusion 
 
Of course, more work is required in the attempt to make sense of those cases in 
which inconsistencies emerge in the sciences. On the one hand, formal 
approaches are clear and tractable, but they add an extra layer of structure that 
is not part of scientific practice. On the other hand, informal approaches, 
despite being closer to the practice, can be just as confusing and unclear as 
certain traits of the practice itself. The challenge here is to find the proper 
balance, and an illuminating account of which features in the practice allow one 
to deal with inconsistencies in a proper way. 
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