Guise Theory Revisited

Francesco Orilia†

orilia@unimc.it

ABSTRACT

Castañeda’s guise theory is a peculiarly interesting Neo-Meinongian approach, in virtue of its bundle-theoretic and anti-representationalist features. But it also has some problematic aspects. It crucially relies on a series of sameness relations, such as consubstantiation or consociation, but this list is incomplete. Moreover, guise theory is hindered by its view of the sameness relations as forms of predication alternative to what may be called, following Plantinga, standard predication. This paper thus proposes a revised version of guise theory that acknowledges two additional sameness relations and standard predication.

1. Introduction

The famous debate between Meinong and Russell on non-existent objects saw the former succumb to the latter, or at least this is how it was typically perceived in analytic quarters, where Russell’s point of view became orthodoxy.1 However, In the second half of the last century, some analytic “Neo-Meinongians,” as we may call them, tried to vindicate Meinong (Routley, 1966, 1979; Castañeda, 1974, 1989; Parsons, 1975, 1980; Rapaport 1976, 1978; Zalta, 1983; etc.). They argued that there are many good reasons to follow Meinong in acknowledging non-existent or even impossible objects, in order to account, e.g., for intentionality, dreams, fiction and the like.

Neo-Meinongian theories come in two sorts: *double predication* approaches and *double property* approaches, as we may call them. The former

† Dipartimento di Studi Umanistici, Sezione di Filosofia e Scienze Umane, Università di Macerata, Italy.

1 On the Meinong-Russell debate and for references to the relevant works by Meinong and Russell, sec, e.g., Smith, 1985 and Reicher, 2012.

distinguish two kinds of predication, *internal* and *external*, and the latter two kinds of properties and relations, *nuclear* and *extra-nuclear* (in the terminology of Parsons, 1980).

For reasons that I shall briefly explain below, I think that the double predication approach is more appealing. Among the double predication views Zalta’s theory of abstract objects is probably the most popular one. In contrast, Castañeda’s guise theory (GT, in short) has never had many followers and nowadays is almost completely neglected. Nevertheless, in virtue of its bundle-theoretic and anti-representationalist aspects, it is the most intriguing among the double predication approaches, or so I shall argue. However, GT has also some significant drawbacks, which I shall try to bring to the surface. I shall thus put forward a revised version of guise theory, let us call it *GT* *, which tries to improve over its predecessor, while preserving its bundle-theoretic and anti-representationalist nature. Although I am not presently inclined to endorse a standpoint of this sort, I propose it for consideration to those who find appealing a bundle-theoretic and anti-representationalist approach to the ordinary objects we deal with in experience.

2. The Meinong-Russell Debate

It will be useful for the following discussion to briefly review how Russell argued that Meinong’s *Gegenstandstheorie* is contradictory.

It appears that Meinong is committed to the truth of sentences such as these:

1. the round square is round;
2. the round square is square;
3. the existent round square is existent.

2 As we shall see in footnote 17, it is arguable that these approaches do not really endorse two kinds of predication, in spite of what their supporters claim and what the label “double predication” suggests.

3 In the following, for brevity’s sake I shall often simply talk of properties even though what I say has also to do with relations. The context will make it clear when this is the case.

4 It has been however widely discussed in the 1980’s; see Tomberlin 1983, 1986 and Jacobi and Pape, 1990.

5 GT was first presented in Castañeda, 1974, although the name “guise theory” appears in later works. Although in these works Castañeda adds details and considers variants, the original formulation of Castañeda, 1974, has remained stable and I shall base my discussion here on it.
This is so, because he thinks that there are true propositions that commit us to non-existent objects. For example, it is true that the winged horse does not exist and it is true not only that the round square does not exist, but even that it is impossible. Moreover, let us suppose, it is true that Alex is thinking of the winged horse (e.g., while wondering whether such a beast could be found somewhere). Since there are these true propositions, argues Meinong, there must be the objects that they are about, namely the winged horse and the round square.

We can generalize, for it seems there are no limits to the objects we can think of and in many cases we do not know whether we are thinking of something existent or not. We can think for example of the tallest man on earth and wonder whether he exists or not. Probably he does, but perhaps he does not, since there are two men of equal height who are taller than any other man on earth. Thus, Meinong came to conceive of the principle of the freedom of assumption, which asserts that, given any set of properties, there is a corresponding object with exactly those properties (other formulations that do not invoke sets are possible, but we need not be fussy for present purposes). This principle allows for an incredibly rich “jungle” of objects, to use Routley’s well-known metaphor. Some of its inhabitants exist, such as the morning star, and some do not, such as the winged horse.

Which properties do these non-existent objects have? Well, we think of them as having certain properties; for example, Alex thinks of the winged horse, and thus, it seems, of an object with the property of being winged. For otherwise he would have thought of something else, say the horned horse. Therefore, in Meinong’s opinion, it is appropriate to say that they at least have the properties with which we think of them, i.e., the properties expressed by the predicates that we use in concocting the definite descriptions by means of which we think and talk about them. For example, the predicates “winged” and “horse” that contribute to the definite description “the winged horse.” In the light of this, (1)-(3) above must be true. Yet, argues Russell, we also know that, necessarily, if something is square, then it is not round and thus, a fortiori, the negation of (2) must be true:

\[(2') \text{the round square is not round.}\]

Moreover, as Meinong himself admits, an object that is round and square is impossible and thus fails to exist. But the existent round square is, in view of what we said above, both round and square and is therefore impossible (we
sidestep here the issue of whether it is or it is not identical to the round square). Thus, it must be the case that

\[(3')\] the existent round square does not exist.

In response to Russell, the Neo-Meinongians acknowledge that, in one sense, Russell is right in pointing out that \((1)-(3)\) are false, but they also insist that, in another sense, they are true (and, correspondingly, \((1')-(3')\) are false). In other words, they argue that there are intuitions that pull in two opposite directions and that we should follow both paths. Let us see how they do the trick.

3. The Neo-Meinongians to the Rescue

According to the double predication approach, \((1)-(3)\) and \((1')-(3')\) are ambiguous, since they can be interpreted from the point of view of either internal or external predication. The “Meinongian” intuitions that lead us to think that \((1)-(3)\) are true can be captured by appealing to internal predication. On the other hand, we can resort to external predication in order to account for the “Russellian” intuitions that incline us to reject them and accept \((1')-(3')\). In sum, the pairs of sentences \((1)-(1')\), \((2)-(2')\) and \((3)-(3')\), to the extent that they are true, do not contradict each other because the first member of each pair expresses a proposition involving internal predication, and the second member a proposition involving external predication. Thus, for example, the proposition expressed by \((3)\) tells us that the existent round square is \textit{internally} existent, whereas the proposition expressed by \((3')\) tells us that the existent round square does not have \textit{externally} the property of existing.

Let us write “\(Fx\)” to indicate that the property \(F\) is externally predicated of \(x\) and “\(xF\)” to indicate that \(F\) is internally predicated of \(x\). Then, if “\(E\)” stands for existence and “\(e\)” for the existent round square, the propositions in question are:

\[
(3a)\ eE; \\
(3'a)\ Ee.
\]

The former is true, because it tells us that a certain object that we conceive of as existent, as the \textit{existent} round square, indeed has this property, existence, by means of which, in part, we grasp it. But it has it in the sense that it is characterized and thought of as \textit{constituted} (inter alia) by that property.
Similarly, it is constituted by roundness and squareness, so that these properties as well are possessed by it internally. Its having existence, roundness and squareness in this sense does not mean that it is an object in the spatio-temporal realm, which I can touch or see and which enters directly into the causal order, such as myself or the computer with which I am interacting now in writing these words. Meinong’s principle of the freedom of assumption is held to be valid in this approach only from the point of view of internal predication and thus it grants, inter alia, that there is the existent round square inasmuch as this object internally possesses existence, roundness and squareness.

In contrast with the existent round square, both I and the computer exist from the point of view of external predication. In other words, existence can be truly predicated externally of both me and the computer and of countless other objects. And of course such objects can have externally other properties that the non-existent ones - those that at best have existence only internally - cannot have externally. For example, the yellow square that I have just drawn is externally yellow and square and the green circle that I have just drawn next to it is externally green and round.

It is important to note that non-existent objects can have some properties externally. For example, the winged horse has externally the property of being thought of by Alex and the round square the property of being impossible. But these are properties that do not entail existence, in contrast with properties that entail it, such as colors (yellow), shapes (roundness), natural kinds (being a horse), spatial locations (occupying a certain region of space), etc. (e-entailing properties, in Cocchiarella’s (1982) terminology).

The double property approach draws instead a distinction between nuclear and extra-nuclear properties and limits the Meinongian principle of the freedom of assumption by claiming that it works only to the extent that nuclear properties are involved. While no precise definition of “nuclear” and “extra-nuclear” is offered by the supporters of this approach, Cocchiarella, 1982, has put forward the plausible claim that the distinction corresponds to the one between e-entailing and non-e-entailing properties. Existence is the primal example of an extra-nuclear property and thus, according to this approach, there is no object corresponding to the definite description “the existent round square,” inasmuch as “existent” stands for a nuclear property. However, the principle of the freedom of assumption suggests that we can think of the existent round square and similarly that we can think of the round square
thought of by Alex, despite the fact that “existent” and “thought by Alex” express extra-nuclear properties. In response to this problem, the double property approach claims (at least in Parsons’ version) that, for any extra-nuclear property, there is a corresponding “watered-down” nuclear property, a property somewhat remindful of its extra-nuclear cousin, but in fact in essence quite different. Thus, for instance, there is watered-down existence, call it existence$_w$, it follows that there is and we can think of the existent$_w$ round square and that such an object is existent$_w$ (thereby allowing us to capture a sense in which (3) is true), although it is not (truly, extra-nuclearly) existent (thereby allowing us to capture a sense in which (3’) is true).

I think that this approach is quite inferior to the double predication approach. For one thing, the distinctions between nuclear and extra-nuclear properties and (especially) between the latter and their watered-down versions are rather obscure. Moreover, even if this problem is overcome, it is hard to see how these distinctions can cut any ice in dealing with the problem that they are designed to solve. For if we grasp them, it seems to follow that we can conceive of the extra-nuclearly existent round square just as we conceive of the nuclearly existent round square. But the former recreates the problem pointed out to Meinong by Russell in relation to the existent round square. I shall thus leave the double property approach aside here and concentrate on the double predication approach.

4. GT vs. the Other Double Predication Approaches

The distinction between internal and external predication is understood differently by Castañeda on the one hand and the two other main supporters of the double predication approach, namely Rapaport and Zalta, on the other hand. Their disagreement originates from deep underlying divergences regarding the nature of ordinary objects and our commerce with them.

Traditionally, following the Aristotelian-Lockean tradition, ordinary objects are viewed as substrates, exemplifying an infinite number of properties (for any property P, either P or its negation), but fully distinct from their properties. Such entities are in a sense not really accessible to the mind or, to put it otherwise, they cannot be directly before our minds: we think of and perceive objects with properties, but they are distinct from their properties;

6 I thus neglect here the issue of how the double property approach deals with the pairs (1)-(1’) and (2)-(2’). See Orilia, 2002, for more details.
moreover, their properties are too many for us to grasp all of them. Following Rapaport (1978, p. 152), let us call them *actual* objects. Once we acknowledge actual objects, we are naturally led to some form or another of representationalism. We need entities that in thought or perception can go proxy for actual objects and somehow work as their representatives. Fregean senses can be understood along these lines.

According to GT, there are no such actual objects. The objects surrounding us and with which we have our daily perceptual interactions, the computer on which I am writing these words, the chair on which I am sitting, the flowers that I am observing, the cat nearby, the sun shining over me, even myself, are *guises*, concrete individuals with properties, but a limited number of properties, *from the point of view of internal predication*. Guises are the only items that have properties in this sense and the properties possessed by them are those that constitute them. Because the properties that constitute guises are few, guises are, as Castañeda often puts it, “tiny,” so tiny that we can directly have them before our mind. In line with the Meinongian tradition, some of them exist and some do not (from the point of view of external predication). We shall see in a moment how this is to be understood, according to GT.

In Frege’s opinion, a definite description expresses a sense, which, in turn, if denoting, denotes (in typical cases) an actual object, an item with which we cannot be acquainted and that therefore cannot be a constituent of a thought or proposition. In contrast, GT endorses this semantic thesis: a definite description denotes a guise, an item with which we can be acquainted and thus a constituent of the thought expressed by a sentence containing the description.

In sum, Castañeda avoids representationalism, and embraces a form of direct realism regarding both perception and thought. Concrete individuals are guises and guises can be directly grasped by us, since they are constituted by a limited number of properties (which can themselves be directly grasped).

Thus, for instance, the morning star of Frege’s famous example is a guise that has internally just or little more than these properties: being a celestial body, appearing in the morning sky before any other celestial body (we take

7 This is so in typical cases; GT also acknowledges infinite “Leibnizian” guises, but we can ignore them for present purposes.

8 The description may be, so to speak, “non-denoting” in the sense that the guise referred to by the description fails to exist from the point of view of external predication.
“star” and “morning” to mean them, respectively, and in the following I shall often indicate these properties in brief by means of “S” and “M,” respectively). 9

In order to account for our well-justified and deep-seated belief that the objects we deal with cannot be exhausted by the limited number of properties with which we apprehend them, GT appeals to consubstantiation(symbolized by “C*”). This is a sameness relation that contingently links different guises in such a way that they are like, as it were, different aspects, modes of presentation or ways of appearing, of actual objects exemplifying an infinite number of properties. Consider for example the property, P, of having precisely a certain mass. One might insist that the morning star either has P or its negation; we may not know which one, but it must have one of them. GT answers that it has one of them, say P, in the sense that it is consubstantiated with the guise that, besides having internally the properties M and S, also has, internally, property P. By virtue of this, we say that the morning star has externally property P, in addition to all the properties that it has internally. And there are a great deal of other properties that the morning star has externally, by virtue of its being consubstantiated with other guises. For example, the morning star is consubstantiated with the evening star, i.e. the guise that possesses internally the properties of being a celestial body (S) and of disappearing as last in the evening sky (E, as we may say in brief). Hence, the morning star has externally the property E, and similarly the evening star has externally the property M.

Strictly speaking, then, there are no actual objects, there are just the guises and their consubstantiational links. However, we may also say that, corresponding to the actual objects of the traditional view, there are sets of mutually consubstantiated guises, consubstantiational clusters, in Castañeda’s terminology. GT is thus similar to a bundle theory, but it is, as Castañeda puts it, a bundle-bundle theory. In the first place, guises could be viewed as

9There is point that Castañeda never made explicit and that is worth emphasizing, namely the fact that the realm of guises has a hierarchical order, since some guises are ontologically dependent on other guises; guise are, so to speak “generated” in stages (Orilia, 1986, p. 162). For there are, according to GT, relational properties that involve other guises as constituents. Moreover, in line with Meinong’s principle of the freedom of assumption, to any set of properties there corresponds a guise. Thus, for example, the property of weighing more than the winged horse can be one of the constituting properties of a certain guise, g. But, if this is the case, g “presupposes” the guise c(W, H), i.e. g is ontologically dependent on c(W, H). We shall discuss below in more detail how these relational properties should be understood.
“bundles of properties” as they are ontologically dependent on the properties that constitute them and are identified by them just like sets are identified by their members. Indeed, Castañeda characterizes guises as sets of properties (called guise cores) made somehow concrete by an operator, “c,” corresponding to the definite article. Hence, he takes them to have this form: $c\{F_1, ..., F_n\}$, where $F_1, ..., F_n$ are properties. Secondly, guises can give rise to bundles of bundles to the extent that, if consubstantiated, are members of consubstantiological clusters.

More details on consubstantiation will be offered below and we shall also see that it is viewed by Castañeda as just one of several other forms of external predication. But, for clarity’s sake, it is important at this juncture to underline that consubstantiation is what allows in GT the distinction between the internal and the external attribution of existence. Existence in the external sense is, according to GT, being consubstantiated with other guises or, equivalently, being self-consubstantiated, since Castañeda assumes that a guise consubstantiated with other guises is also consubstantiated with itself. Thus, for example, the morning star exists. In contrast, the winged horse and the round square do not exist, because neither of them is consubstantiated with other guises or self-consubstantiated. A guise however can possess existence internally in that the property of existence (understood, given what we said above, as self-consubstantiation) is among the properties that constitute a guise. Thus, e.g., I can conceive of the existent (self-consubstantiated) round square: $c\{E, R, S\}$, where E, R and S are, respectively, self-consubstantiation, being round and being square. This is a guise that possesses internally the property of existence. But it is not externally existent since it is not in fact consubstantiated with itself or any other guise.

Let us now see briefly how the theories proposed by Rapaport and Zalta differ from GT. According to Rapaport and Zalta, there are entities, Meinongian objects (Abstract objects in Zalta’s terminology), comparable to guises, in that they have properties in the internal sense. In addition, however, these theories also admit actual objects (concrete objects, in Zalta’s terminology), which are assumed to have properties only in the external sense. Such objects can be correlates of Meinongian objects. In particular, an actual object x is a correlate of a Meinongian object m when x has externally all the

10Thus, for example, the guise denoted by “the morning star” is $c\{M, S\}$ and, if W and H are the properties of being winged and being horse, respectively, the guise denoted by “the winged horse” is $c\{W, H\}$.

properties that \(m \) has internally; moreover, if no other actual object has all the properties that \(m \) has internally, \(x \) is also said to be the *unique* correlate of \(m \).

As we noted above, once we acknowledge actual objects, we are naturally led to representationalism. And in fact Meinongian objects are in these views intermediaries between our minds and corresponding actual objects: I can think of an actual object, \(x \), in the sense that I have before my mind a Meinongian object \(m \) such that \(x \) is a unique correlate of \(m \). Thus, Meinongian objects can be viewed pretty much like Fregean senses (Zalta, 1983, Ch. 6).

5. Enter Denoting Concepts

Interesting as these theories may be, if we abandon the bundle-theoretic and realist features of GT and embrace representationalism and substantialism, there seems to be no reason to acknowledge Meinongian objects. We can do with Russellian denoting concepts (Cocchiarella 1982, 1989; Landini 1986, 1990; Orilia, 1998, 1999). Very roughly this is the idea.

As is well-known, Russell puts forward his theory of descriptions as an alternative to both Meinong’s theory of objects and Frege’s theory of sense and reference. However, it turns out that the theory of description is too “slim” to account for all the data. For example, there seems no way, from its point of view, to account for the intuition that in some sense (1)-(3) are true. For instance, (1) cannot but express, in this perspective, the following false proposition:

\[
(1R) \text{there is exactly an (actual) object, } x, \text{ with the property of being round and square and } x \text{ has the property of being round.}
\]

But we can go back to Russell’s earlier theory of denoting concepts in *The Principles of Mathematics* and view them as properties of properties. In particular, we can view a definite description, “the \(F \)”, as expressing a denoting concept of the following sort. It is a property that another property, say \(P \), possesses when there is exactly an object with the property \(F \) and this object has also property \(P \). We can designate a denoting concept of this kind, a *determinate* denoting concept, as follows: “[the \(F \)].” Here \(F \) is typically a conjunctive property. For example, the denoting concept expressed by “the morning star” is [the (M & S)]. A proposition that attributes the denoting concept [the \(F \)] to a property, say the property \(G \), is true if and only if there is
exactly an object with the property F and this object has also property G. Consider, e.g., the sentence:

\[(4)\] the morning star is a planet.

From this perspective, (4) expresses a proposition that predicates the following denoting concept of the property of being a planet: being a property, X, such that there is exactly an object with the property (M & S) and this object has also property X. This proposition is true, as it is equivalent to the proposition that asserts that there is exactly an object with the property (M & S) (i.e., being a morning star) and this object has also the property of being a planet.\footnote{A symbolic device that allows us to express more rigorously denoting concepts is the lambda operator briefly discussed below at the end of § 8.}

Once we have acknowledged denoting concepts, we can appeal to them in order to account for the data that cannot be captured with the simple means of Russell’s theory of descriptions. For example, we can understand the sense in which (1) is true by viewing it as expressing a proposition that says of a certain denoting concept, the one expressed by “the round square,” that it contains the property of being round. By “containing” here I mean the relation that links a denoting concept [the (F_1 & ... & F_n)] to a property P when P is one of the F_i, for $i = 1, 2, ..., n$.

Sentences (2) and (3) can be dealt with analogously. In particular the sense in which (3) is true can be dealt with, by taking existence to be a trivial property that everything has, say self-identity, and see “the existent round square” as expressing this denoting concept: [the(E & R & S)] (where “E,” “R,” and “S” stand for the properties existence, roundness and squareness, respectively). We can thus take (3) to be true by reading it as expressing the proposition that asserts that this denoting concept contains the property E. On the other hand, we can take (3) to be false by reading it as expressing the false proposition that predicates this denoting concept of E, i.e., a proposition asserting, falsely, that there is exactly an object that exists (is self-identical), is round and is square.

In sum (roughly), whenever the Rapaport-Zalta approach appeals to Meinongian objects and internal predication, the approach based on denoting concepts appeals to determinate denoting concepts and the containing relation and whenever the Rapaport-Zalta approach appeals to Meinongian objects and external predication, the approach based on denoting concepts appeals to determinate denoting concepts predicated of properties. But denoting
concepts are properties, predicatable entities, i.e. entities that the Meinongians must acknowledge just like the Russelians. Thus, it seems that the approach based on denoting concepts can deal with the data just like the Rapaport-Zalta approach, in the same representationalist way and similarly acknowledging actual objects. But it does not have the additional ontological cost paid by the latter in acknowledging Meinongian objects.

In contrast, GT proposes a quite different ontology. True, it buys guises just as the Rapaport-Zalta approach buys Meinongian objects, but on the other hand it dispenses with actual objects and accordingly proposes a realist account of cognition. In sum, a guise-theoretical approach has its own specific interest, that is left unscathed by the fact that determinate denoting concepts can do the tricks that Meinongian objects are designed to do.

Before turning to GT’s difficulties, let us look at it more closely.

6. Additional Details on GT

As noted above, consubstantiation is one among several different forms of external predication. All forms of external predication are also considered by Castañeda “sameness relations,” since each of them, depending on the context, is expressible in English by the locution “is the same as” or, in brief, “is.” In particular, consubstantiation is expressed by “is” when we make assertions such as “the morning star is the evening star,” or “the author of The Name of the Rose is the most famous Italian semiotician” which can be justified only a posteriori, on the basis of what the physical world in which we find ourselves happens to tell us. Here are the other sameness relations acknowledged by GT.

Strict identity, commonly expressed by the infix symbol “=,” is a relation that links any entity to itself and only to itself and obeys the standard Leibniz’s law of substitutivity. It could be at play when we assert that the winged horse, whether it exists or not, is the winged horse. 12

12 Typically, however, the English “is,” according to GT, does not express strict identity, but rather consubstantiation or perhaps other sameness relations. This allows for an interesting solution to Frege’s paradox of reference. The basic idea can be illustrated by saying that we cannot use Leibniz’s law of substitutivity of identicals to infer (i) Tom believes that the morning star is a planet from (ii) Tom believes that the evening star is a planet and (iii) the morning star is the evening star, because the “is” of (iii) expresses consubstantiation, rather than strict identity.
The Guise Theory Revisited 65

Conflation (*C) holds of two guises when their cores are logically or conceptually equivalent. Thus, one may express it with the “is” of “the animal with wings that is a horse is the winged horse.”

Consociation (**C) holds of two guises when they are thought of by some mind as consubstantiated, whether they are such or not, e.g. in belief or in literary fiction. For example, in the sentence “the detective who lives in Baker Street is the best friend of a physician called Watson,” the “is” is best taken to mean consociation. Moreover, consociation is involved when a mind is somehow related to a guise, as when, e.g., Meinong thinks of the round square (see example (7), below).

Transubstantiation has to do with time. Castañeda is very sketchy in discussing it, but it seems clear that he sees it as a relation that contingently links two consubstantiation clusters across time just as consubstantiation links two guises at a specific moment of time. I think that transubstantiation is meant to account for our use of “is” in so-called statements of identity through time, e.g., “the caterpillar that was in the garden a month ago is the butterfly now flying in the kitchen.” However, Castañeda has never provided an explicit treatment of these sentences.\(^{13}\)

Transconsociation has to do simply with literary fiction, or at least so it seems, since Castañeda discusses it only with regard to fiction. It is put forward in order to account for the evolution in time of a character within a story or for the fact that the character of a story can be “imported” into another story, possibly invented by a different author. Thus, presumably, according to Castañeda, we express transconsociation with “is” when we say that the Ulysses of the Odyssey is the Ulysses of the Divine Comedy. However, although Castañeda has dealt extensively with fiction, he was not quite explicit with regard to the issue of how to associate natural language sentences to propositions involving transubstantiation.

Castañeda thinks that the sameness relations are forms of predication, because in his opinion they should be called in even when we use the “is” of predication, as when we assert that the morning star is a planet and thus we utter sentence (4) above. In this case, the proposition expressed, according to GT, is a proposition that asserts of two guises, \(c\{M, S\}\) and \(c\{M, S, P\}\), where \(P\) is the property of being a planet, that they are consubstantiated:

\[(4a) \ \text{C}*(c\{M, S\}, c\{M, S, P\}).\]

\(^{13}\) For a guise-theoretical treatment of them, see Orilia, 1989.
The latter guise is, in Castañeda’s terminology, a “P-protraction” of the former. In general, an X-protraction, $[g]X$, of a guise g, is a guise whose core is exactly like the core of g, except that it contains in addition the property X.

Consider now

(5) the detective who lives in Baker street is a misogynist.

In this case, the “is” of predication expresses consociation and thus the expressed proposition is:

$$ (5a) C^{**}(c\{D, L\}, c\{D, L, M\}), $$

where D, L and M are the properties of being detective, living in Baker Street, being misogynist.

In other cases, the “is” of predication may express conflation or the other sameness relations, but for present purposes we need not dwell on this here.

When it comes to relational sentences, this approach to predication leads to the view that the expressed proposition is a conjunctive proposition, where, at least in typical cases, the conjuncts involve either consubstantiation or consociation. To illustrate we shall consider two examples provided by Castañeda: 14

(6) the principal kisses the art teacher;

(7) Meinong thinks of the round square.

Kissing is e-entailing in both of its argument places, for one cannot kiss or being kissed without existing. Assume that g and g' are two existing guises denoted by “the principal” and “the art teacher,” respectively. Assume further that K_1 and K_2 are the relational properties of kissing g' and being kissed by g, respectively. Then, the conjunctive proposition expressed by (6) is:

$$ (6a) C^*(g, g[K_1]) \& C^*(g', g'[K_2]). $$

Let us now turn to (7), assuming that m is the guise denoted by “Meinong,” 15 that r is the guise denoted by “the round square” and that T_1 and T_2 are respectively the relational properties of thinking of r and being thought by m. (7) expresses this proposition:

14 See Castañeda, 1974, p. 14 and p. 18, respectively. I have slightly modified the sentences discussed by Castañeda and also slightly modified the analysis, but with no significant divergence.

15 According to GT, proper names stand for guises. See Castañeda, 1974, p. 27.
(7a) C*(m, m[T1]) & C***(r, r[T2]).

All sameness relations are taken to obey their own special laws. Those governing identity and conflation are basically exhausted by what we said above. As regards the others, Castañeda provides a detailed account only as regards consubstantiation. But it is not important for present purposes to dwell much on it. I shall only mention that among such laws we find: the law of *uniqueness*, which ensures that an existing (i.e., self-consubstantiated) guise cannot belong in two different consubstantiational clusters; (ii) the law of *consistency*, which ensures that no consubstantiational cluster can have a guise with a property P and its complement $\sim P$ in its core, or two guises, one with P in its core and the other with $\sim P$ in its core; the law of *completeness*, which ensures that in any consubstantiational cluster we find, for every property P, either a guise with P in its core, or a guise with $\sim P$ in its core.

GT leaves open a number of complex issues regarding transconsociation and transubstantiation. In order to tackle them, we should delve deep into metaphysical matters having to do with fiction, time and even their interrelations. This is something that goes beyond the scope of this paper and thus I shall leave transconsociation and transubstantiation aside in the following.\(^{16}\) Similarly, consociation will be left aside, at least as regards its role in accounting for fiction.

Here I shall more modestly focus on other aspects of GT that in my opinion call for a revision. In particular I shall argue that Castañeda’s list of sameness relations is incomplete and that to view them as forms of predication is a needless and ultimately unsustainable complication. Indeed, even the distinction between internal and external predication can in a sense be avoided. I shall thus promote a version of GT, GT*, with additional sameness relations and with just one kind of predication, *standard* predication, as we may call it (following Plantinga, 1983).

7. Additional Sameness Relations

Let us see now why I think that the list of sameness relations is incomplete. Consider sentences such as these:

\(^{16}\)Castañeda was never quite explicit on temporal matters. In particular, he never explicitly endorsed an A- or a B-theory of time. Since I am a supporter of an A-theory and in particular of a moderate presentist view (see Orilia, forthcoming), I would give GT* a twist in that direction.
(8) being 6 feet tall is the height property possessed by the tallest spy;

(9) weighing 50 pounds is the weight property possessed by the tallest spy.

Suppose that it so happens that the tallest spy is 6 feet tall and weighs 50 pounds. Then, these sentences are contingently true. To account for these truths, it seems we should say, in the spirit of GT, that there is a sameness relation expressed by the “is” of these sentences. And yet in the list of the previous section, we cannot find a sameness relation of which we can say that it is expressed by such an “is,” thereby allowing them to be taken as true.

In the list we find relations that link two guises, but here we need a relation for which at least one relatum is a property, being 6 feet tall or weighing 50 pounds. For the expressions “being six feet tall” and “weighing 50 pounds” must be certainly taken at face value as standing for properties and not for, so to speak, guises of properties. For properties are, according to GT, the primary ingredients of the world and at the same time, given GT’s anti-representationalism, they can be before the mind, just like the guises that are built out of them and, like guises, can thus be constituents of the propositions that are expressed by sentences and are accusatives of propositional attitudes. Moreover, if we want to preserve the guise-theoretical idea that definite descriptions always stand for guises, the other relatum should be a guise. Thus, we need a relation that holds of a guise, \(c \{ P_1, \ldots, P_n \} \), and of a certain entity, \(x \), just in case \(x \) is the only entity that has the properties \(P_1, \ldots, P_n \). The entity \(x \) may be a property, as we saw in our example, but it can in principle also be another kind of entity, possibly a guise. Let us call this new sameness relation primary association.

Even with primary association in stock, the list of sameness relations is incomplete. For consider the “is” of

(10) the height property of the tallest spy is the height property of the tallest jockey.

Suppose it is true that both the tallest spy and the tallest jockey are 6 feet tall. Then, (10) is true, but again it does not seem that in the above list we can find a sameness relation of which we can say that it is expressed by the “is” of this sentence, thereby allowing it to be taken as true. Intuitively, if definite descriptions stand for guises, we need to resort to a relation that holds of guises contingently, just like consubstantiation and consociation. But it cannot be the former, since that is a relation that links guises that, as we saw, are like
aspects or ways of appearing of concrete individuals such as tables, computers or even persons. Here the guises seem to be ways of appearing of properties. Moreover, it surely cannot be consociation, since this holds of guises that are thought of as somehow, e.g., as consubstantiated. But in this case the relation seems capable of holding of guises independently of our thoughts, let alone thoughts involving consubstantiation. In sum, we want a sameness relation, call it secondary association, that holds of two guises, \(c\{P_1, \ldots, P_n\}\) and \(c\{Q_1, \ldots, Q_m\}\), just in case one entity is such that it is the only one that possesses the properties \(P_1, \ldots, P_n\) and it is the only one that possesses the properties \(Q_1, \ldots, Q_m\). This one entity is typically a property, e.g., being six feet tall, as in our example. But it can in principle be any kind of entity, possibly a guise.

In sum, GT* should enhance GT by incorporating primary and secondary association. In the next section we shall see why GT* should also acknowledge standard predication.

8. Standard Predication

What kind of predication is at play in the above explication of what primary and secondary association are? For instance when it was said that one entity possesses the properties \(Q_1, \ldots, Q_m\), which kind of predication has been appealed to? Is it internal or external, and, if the latter, in terms of which sameness relation is it to be understood? Clearly, it is not internal predication. Yet, it seems we cannot appeal to a sameness relation to understand it, unless perhaps we accept to be involved in an infinite regress by introducing a new sameness relation, which in turn requires a notion of property possession and thus a new sameness relation, and so on. It seems better to admit that the property possession involved is something very basic and primary: standard predication.

If we focus on relational sentences such as (6) and (7), we seem to have a similar response. We have seen that, in dealing with them, GT acknowledges relational properties such as kissing \(g^*\), being kissed by \(g\), thinking of \(r\), being thought of by \(m\), where \(g^*, g, r, \text{ and } m\) are guises. But such properties seem to presuppose a predication, somehow linking a relation to a guise, e.g., the relation kissing to the guise \(g\), or the relation thinking-of to the guise \(r\). And it is hard to see how a sameness relation could be involved in providing this link. It seems much more plausible, again, to see something very basic and primitive at play: standard predication. Once standard predication is admitted, we can
view the above relational sentences, (6) and (7), as expressing not conjunctive propositions, but simply relational propositions involving standard predication.

Let us use the common notation of first-order logic, involving parentheses and commas, in order to express standard predication. Then, on the assumption that K and T are the kissing and the thinking of relations, these propositions are:

(6b) \(K(g, g') \);
(7b) \(T(m, r) \).

Once standard predication is acknowledged, the sameness relations need not be viewed as forms of predication. They become just relations among others, presupposing standard predication in order to be attributed. Thus, for example, the proposition \(C^\ast(c\{M, S\}, c\{E, S\}) \) involves consubstantiation as a relation attributed to two guises, just as (6b) involves kissing as a relation attributed to two guises. In both cases there is standard predication (signaled by the parentheses and the comma) to grant the attribution.\(^\text{17}\)

We noticed above that we can make a rather intuitive distinction between e-entailing and non-e-entailing properties. More generally, we can apply the distinction to relations with respect to their argument places (for example, kissing has two argument places and giving has three argument places).\(^\text{18}\)

Consider kissing. Intuitively, something must exist for it to be able to kiss and similarly something must exist in order for it to be kissed. Thus, we should say that kissing is e-entailing in both of its argument places. In contrast, thinking of is e-entailing only in its first argument place, for something must exist in

\(^\text{17}\)Internal predication itself should, I think, be viewed as a relation among others, namely the relation that holds of a guise \(g \) and a property \(P \) just in case \(P \) is among the properties in the core of \(g \). If we use \(* \in \) to indicate this relation we can represent the proposition expressed by (1), when this sentence is interpreted \(à la \ Meinong \), as follows: \(* \in (R, c\{R, S\}) \). The use of the parentheses brings to the surface that standard predication is presupposed in a proposition involving \(* \in \). Something similar could of course be said for Zalta’s and Rapaport’s theories. In other words, as we may paradoxically put it, internal predication is not predication. Of course, we can, despite this, call it “predication” and this may after all at least in part be justified by the fact that we take this relation to be expressed by a word, the English “is,” that normally conveys predication. This has the merit of preserving the appropriateness of the label “double predication approach” in referring to the theories of Castañeda, Rapaport and Zalta.

\(^\text{18}\)Castañeda himself borrows this distinction from Cocchiarella and introduces it in GT (1974, p. 17).
order to think, whereas something can be thought of without existing, or at least this is so from a Meinongian, guise-theoretical, perspective.

Now, according to GT, existence involves consubstantiation and this should be preserved in GT*, as the latter aims only at taming its main problematic aspects. We should thus assume this. If a guise g happens to occupy, so to speak, an e-entailing place of a relation in a true relational proposition, this should result in an appropriate extension of the consubstantiational cluster to which g belongs. Thus, for instance, since (6b) is true, the guise g should be constubstantiated with $g[K1]$ and the guise g' with $g[K2]$, where, let us recall, K1 and K2 are the properties of kissing g' and of being kissed by g, respectively.

We can capture this idea in a general fashion as follows. Given a relational proposition $R(g_1, ..., g_n)$, let us say that $R1$ is the relational property of being an entity x such that $R(x, g_1, ..., g_n)$, $R2$ the relational property of being an entity x such that $R(g_1, x, g_3, ..., g_n)$, and so on. With this convention in place, we can say that GT* should acknowledge, in addition to all the laws about consubstantiation already recognized by GT, the following additional principle:

(P1) $R(g_1, ..., g_n) \leftrightarrow C^*(g, g[R])$, provided that the ith argument place of R is e-entailing.

To illustrate (P1), consider (6b) and the relevant relational properties K1 (i.e., kissing g', the art teacher), relative to the first argument place of the relation K, and K2 (being kissed by g, i.e., the principal), relative to the second one. Since the relation K is e-entailing in both of its argument places, (P1) tells us that $K(g, g')$ is equivalent to both of these propositions: $C^*(g, g[K1])$ and $C^*(g', g[K2])$. To further illustrate, look at (7b). In this case, we need only take care of T1, i.e., thinking of r (the round square), since only the first argument position of T, the thinking of relation, is e-entailing. In this case, (P1) tells us that $T(m, r)$ is equivalent to $C^*(m, m[T1])$.

We may want to bring consociation to the fore and add that, given $T(m, r)$, it is also the case that $C^*(r, r[T2])$, where T2 is the property of being thought of by m. I am not sure however that this is really needed. Even with standard predication available, we need to appeal to consubstantiation, because in a

19It seems appropriate to say that the left-hand side of (P1) expresses a proposition more fundamental than the one expressed by the right hand side. For example, it is by virtue of the fact that $R(g, g')$ that $C^*(g, g[R1])$ and not the other way around.
guise-theoretical perspective we need consubstantiational clusters, since we do not have actual objects. But perhaps, once we have standard predication, we can always appeal to it to attribute properties to non-existent guises from an external point of view and thus consociation is not really needed. However, I shall not further explore this here.

Another principle that it seems appropriate to add is the following:

\[(P2) \; (R(g_1, \ldots, g_n) \land \text{C}(g_i, x)) \rightarrow R(g_1, \ldots, x, \ldots, g_n), \text{for } i = 1, 2, \ldots, n.\]

Here I am assuming that \(R(g_1, \ldots, x, \ldots, g_n)\) is a proposition exactly like \(R(g_1, \ldots, g_n)\) except that it involves \(x\) where \(R(g_1, \ldots, g_n)\) involves \(g_r\) To illustrate (P2), consider again (7b). Since \(m\) (Meinong) is consubstantiated with the Austrian philosopher who wrote *Gegenstandstheorie* (in short, \(m'\)), (P1) tells us that, given the truth of \(T(m, r)\), it is also the case that \(T(m', r)\).

Before closing there is an important issue that should at least briefly be discussed. I have freely assumed all sorts of complex properties and relations and I have also taken for granted that they can be freely predicated, without type-theoretical restrictions, of other properties and relations or even of themselves. This is, I think, as it should be. As is well-known, however, this immediately leads to paradoxes such as Russell’s and possibly even to additional paradoxes having to do with acknowledging in one’s ontology all sorts of guises (Landini, 1985). I do not really know how one should deal with the paradoxes. I used to think that they should be avoided while preserving classical logic (Orilia, 1999), but now I am not so sure and I tend to favor other strategies (Orilia, 2006, Field, 2008). In any case, this problem is not peculiar to the guise-theoretical approach discussed here. All the Neo-Meinongian approaches and any approach based on denoting concepts must also face it (see, e.g., Rapaport, 1978; Zalta, 1983, Ch. 5 and appendix A; Cocchiarella, 1989, Orilia, 1996).

\textit{To neatly represent complex properties and relations, it is very convenient to take advantage of the lambda operator, \(\lambda\), which binds the free variable(s) in an open sentence containing such variables, in order to generate a term that expresses a property or relation. Thus, for example, given the open sentence \((R(x) \land S(x))\), this operator generates the term \(\lambda x(R(x) \land S(x))\), which expresses the property of being round and not square. I have avoided the use of the lambda operator to keep things at an informal level and make the paper, hopefully, more readable. For a more formal presentation of the system outlined here, see Orilia, 1986, Ch. 4.}
I have argued that Castañeda’s guise theory is a peculiarly interesting Neo-Meinongian approach, in virtue of its bundle-theoretic and anti-representationalist features. I have then focused on two problematic aspects of it: its insufficient list of sameness relations and its commitment to view them as forms of predication alternative to standard predication. I have thus put forward a revised version of guise theory, which acknowledges two additional sameness relations and standard predication. There are many other issues that one may want to consider. For example, should GT* really be committed to sets or should it just do with properties, on analogy with Russell’s so-called no-class theory of classes? If so, one should view Castañeda’s concretizer as something that operates directly on properties, or on conjunctions of properties, rather than on sets of properties. And one should also not really endorse consubstantiational clusters, i.e., sets of consubstantiated guises, if not as a convenient but ultimately eliminable way of speaking. But these issues must be left for another occasion.

ACKNOWLEDGEMENTS

I wish to thank the late Hector-Neri Castañeda for his teaching and our many animated discussions on guise theory. Michele Paolini Paoletti has provided useful comments on a previous version of this paper.

REFERENCES

The Guise Theory Revisited

