And Now for Something Completely Different: Meinong’s Approach to Modality

Peter Simons†
psimons@tcd.ie

ABSTRACT

In the twentieth century three approaches to modality dominated. One denied its legitimacy (Russell, Quine). A second made language the source of modality (Carnap). The third treats possible worlds as the source of truth for modal propositions (Kripke, Lewis et al.) Meinong’s account of modality is quite different from all of these. Like the last it has an ontological basis, but it eschews worlds in favour of a rich one-world ontology of objects and states of affairs, many of which notoriously fail to exist and some even more notoriously fail to be possible. We lay out the ontological basis of Meinong’s system and show how he accommodates standard modal notions. Two peculiarities of his system are investigated: his preference of possibility over necessity, and his treatment of degrees of possibility, which allows him to subsume probability theory in his account.

1. Approaches to Modality

Consider the proposition expressed by this sentence:

A. Napoleon could have won at Waterloo.

It is, we suppose, true. In even making this initial supposition we are inviting controversy. Some modal sceptics deny that it has a well-defined truth-value. In some texts this appears to be the position of Quine, and in others, that of Russell. I shall not confront this modal scepticism here, but simply pursue the original supposition that the proposition is true. How? There are, as we know, several ways of accounting for its truth.

† Trinity College, Dublin, Republic of Ireland.
A traditional one is to say that the concept of the subject, Napoleon, does not logically exclude the concept of the predicate, that of winning at Waterloo, or similarly, that the property of winning at Waterloo is not logically repugnant to the essence of the subject. Either of these comes back in the end however to the question what logical exclusion or logical repugnance is, and these in turn rest on the logical possibility of the truth of the proposition expressed by

B. Napoleon won at Waterloo.

So we need to address together both the source of the truth-values of modal propositions like A and the modal status of propositions like B.

One theory, sketched by both Frege and Quine, is that a proposition is necessarily true if it is either a logical truth or follows from a logical truth under some specified conditions such as substitution of synonyms. Again we are not closely concerned with this: call it the hereditary eminence theory. Starting with some logically eminent proposition we call propositions necessary that descend suitably from (presumably, follow logically from) eminent propositions. We then use the facts about modal opposition to give truth-conditions for propositions involving other modal functions.

A superficially different approach employs the concept of analyticity, such as we find in different forms in Hume, Kant and Carnap. According to these views modality turns on the relationships among words, or among their meanings. Whether this comes down to the previous approach is a difficult question.

What all these approaches have in common is that they are ontologically light-touch. That is, they do not involve very heavy ontological commitments to special kinds of objects like essences or natures or possibilia or possible worlds. By contrast there are approaches that involve more directly obvious ontological commitments. Of these the most common are variants of realism about alternative possible worlds. Again I do not intend to go into these, well-investigated as they are, because I am talking about something completely different: an ontological approach which makes no use or mention of possible worlds, and which has excited as good as no attention or interest in the copious writings on modality of the last half-century. The approach is due to that bogey-man of twentieth century philosophy, Alexius Meinong. It is contained in one of Meinong’s last works, the monumental Über Möglichkeit und Wahrscheinlichkeit (On Possibility and Probability), which bears the subtitle Beiträge zur Gegenstandstheorie und Erkenntnistheorie (Contributions to the
Theory of Objects and the Theory of Knowledge). Published in 1915 and reissued in 1972 as part of the Alexius Meinong Gesamtausgabe, it is Meinong’s largest work, at over 700 pages in length (800 in the reissue).

2. Meinong’s General Ontology

To see how Meinong’s theory works, we need a rudimentary grasp of his ontology, which follows, without evaluative comment and without stopping except as necessary to dwell on the translation of Meinong’s terminology from his native German to English.

Everything is an object (Gegenstand). Objects come in four kinds: things, objectives, dignitatives and desideratives. The latter pair are the objects of valuation and desire respectively and can be left aside. The remaining objects figure in purely non-evaluative, cognitive thought. Things (Objekte) are whatever is presentable by a simple idea or denotable by a nominal expression. Objectives (Objektive) are the objects of judgment, assumption, doubt etc. and are what is meant by declarative sentences and other complete clauses. They are usually called ‘states of affairs’. Meinong considered—and rejected—the German equivalent Sachverhalt, and although his reasons are not very persuasive we shall stick with his Latinate expression. Objects have one of three ontological statuses. They can exist (existieren), by which Meinong means they exist actually (wirklich) in space and time and are subject to causality. Or they can subsist (bestehen) which is a kind of ideal or non-spatio-temporal being, such as abstract things like numbers and properties enjoy. Meinong says all things which exist or subsist have being. I shall use ‘exist’ in place of ‘have being’, in other words I shall use ‘exist’ more broadly than Meinong. Finally there are objects which neither exist in space and time nor ideally: Meinong says they have the status of objects outside being (außerseitende Gegenstände). It is now more common, and I shall follow the usage, to call them ‘non-existent objects’. The principal ontological status division, then, is into objects that exist and those that do not.

Objectives are the objects of thought, and have some of the characteristics of propositions, since they can be true or false, but also some of the characteristics of states of affairs, since they can obtain (bestehen, subsist) or not. Meinong never distinguishes clearly the roles of being the bearer of a truth-value from being what it is in virtue of which our thoughts are true or false. Objectives that exist Meinong calls facts (Tatsachen), or factual
objectives (*tatsächliche Objektive*) The opposite of a fact is an unfactual objective (*untatsächliches Objektiv*) or as I shall also say, an *unfact*. A fact can also be a true proposition. Indeed for Meinong a truth or true objective is simply a factual objective that someone apprehends, and a falsehood or false objective is an unfact that someone apprehends. Since there are infinitely many facts and unfacts, most facts are not truths and most unfacts are not falsehoods or untruths. If an objective is a fact, its negation is an unfact, and vice versa.

What an objective is about is its subject. This may be a thing, as when we judge correctly that Napoleon was Corsican or incorrectly that he was Sardinian. It may also be another objective, as when we judge that it is unlikely that any human will live beyond 200 years of age. Relational objectives such as that Plato taught Aristotle have more than one subject. There can be relational objectives about objectives too, as when we judge that it is more likely that it will rain tomorrow than that it will snow tomorrow.

One of Meinong’s famous theoretical positions in ontology is the Principle of Independence, according to which what and how an object is, is independent of whether it is (exists) or not. So Meinong says of the infamous golden mountain that it is both gold and mountainous, even though it does not exist. The same applies to the even more infamous round square, which is, he says, as surely round as it is square. The converse of the independence principle does not apply. What an object is like may well determine that it does not exist – if it is inconsistent or incomplete.

3. The Source of Possibility

When we consider Meinong’s objects, complete as well as incomplete, existent as well as inconsistent, there appears to be nowhere for the modal notion of possibility to “get a grip”. Take Napoleon. There are presumably more facts about Napoleon than we can possibly enumerate or express – only a supernatural being could do that – but these objectives are facts whether anyone knows or thinks them or not. Likewise all the unfacts about Napoleon are unfacts irrespective of whether anyone knows or thinks them. Being a fact or an unfact is something wholly objective. Take any meaningful and non-modal sentence about Napoleon, such as

C. Napoleon was born in Ajaccio.

That one states a fact. Others, such as
D. Napoleon was born in Paris
state unfacts. It is similar with non-existent objects, though for somewhat different reasons. Take the sentence

E. The round square is round.
This, as we saw, for Meinong states a fact. Likewise

F. The round square is green
states an unfact. In the second case however it is not because the property of being green contradicts anything in the nature of the round square. Here is why. For Meinong there is another non-existing object, the green round square, for which the following sentence

G. The green round square is green
states a fact. The two non-existing objects, the round square and the green round square, are different because the latter has a property the former lacks, namely being green. Each of them is both inconsistent and incomplete, but the green square is slightly less incomplete, to the tune of this one property. What distinguishes them is that the round square has no further properties than being round and square, whereas the green round square has one further property.

The logically agile may well consider at this point that the property of having no further properties than being round and being square is itself another property and so the round square has at least this other property. And they would be right: so it does. But here is where Meinong has a way to deal with this worry. He distinguishes between two kinds of property. Nuclear properties (*konstitutorische Bestimmungen*) are those which go to make up the nature of an object, properties like being round and being green. Extra-nuclear properties (*außerkonstitutorische Bestimmungen*) are those odd “philosophical” properties like existing, not existing, having two nuclear properties, being complete, being consistent, etc., which belong to an object without being part of its nature. Any group of nuclear properties can be assumed to be together in some object, but extra-nuclear properties attach to it or do not in a way which it is beyond our freedom to assume. The property of having no further properties than being round and being square is just such an extra-nuclear property. So while the round square has other properties than just being round and being square, it has only these two nuclear properties.
To return to the matter at issue, it looks as though there is no room for contingency on this theory. Napoleon is determined in all respects, and if he has all the (nuclear) properties he in fact does have, he could not lose one or gain another without being non-existent or being another object than he is. In the case of the radically incomplete objects like the round square it is even more obvious that they cannot lose or gain nuclear properties: the round square could not have been green because then it would have been the green round square, and that is a different object.

Common sense however tells us that for existing objects at least, like Napoleon, many of his properties are contingent. He was born in Ajaccio but might have been born in Paris, had his parents’ history been a bit different. He did lose Waterloo but he might not have. And so on. So where is Meinong to find the resources to account for this commonsense feature of ordinary objects?

We fairly naturally say that whereas some of Napoleon’s properties, like being human, are essential to his nature, others, like his losing Waterloo or going bald in middle life, are not. It does not matter exactly whether we can draw a sharp distinction: there is a difference to be accounted for. But Meinong’s theory as we have it so far cannot do that, since it takes all of Napoleon’s nuclear properties, the accidental as well as the essential, to be constitutive of his nature.

Let us consider the following object. It (he) is very like Napoleon, up until 18 June 1815, the day of Waterloo. Then, the battle being about to take place, he makes some different plans and troop dispositions, makes different decisions on the day, attacking the British positions earlier and managing to overrun them in time to drive them from the field and enabling him to fight a holding action against Prussian troops under Blücher and then advance on Brussels. In a word, he wins the battle at Waterloo. Who or what is this Napoleon? Firstly, he is an object, albeit a non-existent Meinongian one. Secondly, he is very like Napoleon, sharing an initial history. And thirdly he wins Waterloo. But it is however fourthly important to recognise that unlike Napoleon he is an incomplete object, since we have not determined in our description every last detail as to how he acts and commands so as to bring about the victory.

Now let us rewind the clock to the point just before the two Napoleons diverge, the actual one and the victorious (but incomplete) one. Consider the incomplete object that has all the properties these two have in common and no
others. Call this likewise incomplete object Napoleon-minus, or N– for short. Call the actual Napoleon N. N has all the properties that N– has and many more besides (by ‘properties’ we always here mean nuclear properties). Now let’s look at the group of all objects which are like N– but are complete, that is, have a full suite of properties, and are consistent, in that none of their properties are incompatible. Call these objects completions of N–. They fall into several subgroups:

- N(W) those which fight a battle at Waterloo;
- N(V) those which fight a battle at Waterloo and win;
- N(L) those which fight a battle at Waterloo and lose;
- N(D) those which fight a battle at Waterloo and neither win nor lose.

Obviously the class N(W) is made up of the disjoint subclasses N(V), N(L) and N(D), and as we know the actual Napoleon N is a member of the class N(L) and therewith of course of N(W). N– by contrast is not a member of any of these classes as N– is incomplete and all the members of N(W) are complete, but N– has the largest collection of properties that all the members of N(W) have in common: it is so to speak their ontological core. The actual number of members of each of these classes will be extremely large, but we will not let that put us off. Suppose we can in some way assess or measure the proportions of the three classes. Let us suppose for the sake of argument that of all the members of N(W), four-tenths or 40% are in N(V), where Napoleon wins; 45% are in N(L), where he loses; and 15% are in N(D), the case of a draw or indecisive action. Something like this fits Wellington’s description of the battle as “It has been a damned nice thing — the nearest run thing you ever saw in your life.” Then we might well want to say

The chances of Napoleon winning Waterloo were 40%
The chances of Napoleon losing Waterloo were 45%

so

The chances of Napoleon not losing Waterloo were 55%
The chances of Napoleon not winning Waterloo were 60%

Meinong would say that since the chances of Napoleon winning Waterloo (on this account) are 40% which is greater than zero, the statement

A. Napoleon could have won at Waterloo
is straightforwardly true.

The source of the ability to make modal claims like this lies, according to Meinong, in there being incomplete objects like N– which can be “completed” in different ways – not obviously in the sense that it can itself be modified, since if we take N– in itself, it is incomplete and so cannot exist, and anything with further properties is another object and not N–, but in the sense that all its nuclear properties are contained in those of many complete objects: the members of N(W). Meinong says in such cases that N– is implected in or implexively contained in each of the members of N(W). One of those members, namely N himself, actually exists, so N– is implected in something that exists, but everything else in which N– is implected does not exist. Meinong says that objects implected in something that exists thereby have implexive being. This is not especially felicitous as a term, but it does not do any serious work.

N– as the subject of a proposition can be judged modally according to the status of the complete objects in which it is implexively contained. So take a proposition of the form

H. N– is X

According as

all completions of N– are X then H is necessary
no completions of N– are X then H is impossible
some completions are X and some not then H is possible (contingent)

and we have a measure of the chance of H being true as

\[\text{Pr}(H) = \text{the proportion: completions of N– that are X to all completions of N–} \]

which will be a number in the range \(0 \leq \text{Pr}(H) \leq 1\), being 0 if H is impossible, 1 if H is necessary, and somewhere between otherwise. Notice the difference from Napoleon himself. If we replace ‘N–’ in the above account by ‘N’, since N is already complete, his only “completion” is himself, so it is impossible that he win Waterloo and the chance of his winning it is 0. To allow non-trivial modality and probability to get a hold, we need to make incomplete but consistent objects the subjects of our statements. It is here, says Meinong, that modality is “at home”.

In some modern uses of ‘possible’ it means ‘necessary or contingent’. Meinong calls propositions which are true (which includes necessary truths)
“also-factual” (*auchmögliche*). Clearly the interesting case is contingency and we shall continue to use the term ‘possible’ just for the contingent case.

4. Two Notions of Possibility

As can be seen from this account, there are really two kinds of thing that might be called ‘possibility’ in Meinong. One gives an answer to the simple question whether a certain proposition is possible or not (meaning ‘contingent or not’). Here there is a straight yes or no answer: either a proposition is contingent or it is not, and if it is not this is because it is either necessary or impossible. Meinong has a (not especially pretty) name for this: he calls it ‘unincreasable possibility’ (*steigerungsunfähige Möglichkeit*). The other sort of case is represented by the grades in between 0 and 1, as in the possibility of Napoleon (N–) winning Waterloo being 0.4. Meinong calls possibility that comes in grades or degrees ‘increasable possibility’ (*steigerungsfähige Möglichkeit*). The two are of course not incompatible, but on the contrary intimately linked: a proposition or objective is unincreasably possible if and only if it has a degree of increasable possibility greater than 0 and less than 1.

The case of increasable possibility is a familiar kind of phenomenon, but we tend to know it not under this name but under the name ‘probability’. Now Meinong does use the German word for probability, *Wahrscheinlichkeit*, but not for this. The reason is that he makes a distinction between the objective status of states of affairs on the one hand and the subjective knowledge or estimation of their likelihood on the other. Both of these have gone under the term ‘probability’, the former as objective probability, the latter as subjective or epistemic probability. Meinong’s terminology reflects a desire to keep these two strictly distinct, but it also embodies the suggestive connotation of the German term for ‘probable’, *wahrscheinlich*, seeming true. He is picking up on the “seeming” part of this and relating it to the experience or estimation of the chances of something’s being so, and reserving the term ‘possibility’ for these chances as they are in themselves, irrespective of how they seem to us or how we subjectively estimate them. We are not here concerned with the subjective side of probability in Meinong’s account, so we shall have no reason not to use the term ‘probability’ for Meinong’s increasable possibility.
5. Some Problems

To the extent that Meinong does deal with (objective) probability in his account of increasable possibility, or degrees of factuality, it must be admitted that his account is relatively rudimentary, and in the short summary at the end of his long treatise he admits as much. He deals only with cases where the number of possibilities is finite, or where the number of kinds of outcome is finite because of prior assumptions that all of the possibilities are equiprobable. What can be said in general is that Meinong’s approach to probability is a species of statistical or frequency theory, whereby the probability of a given proposition (or as Meinong would say, the degree of factuality of an objective) is derived from the truth-values of a range of associated propositions.

So as a theory of probability, Meinong’s account is at least in need of additions. When infinite domains are in question, the idea of probability as a ratio of whole numbers has to be replaced by that of a probability density function, which is a measure assigned to individual cases and which yields the probability of propositions in a range with infinitely many members via a mathematical integration operation. There is in principle no reason why this idea could not be adapted to Meinong’s object theory, but it would need more work.

A related concern is that in the kind of example we have given, the numbers assigned to the various chances or likelihoods (e.g. of N– winning Waterloo) are not well motivated, since the number of completions of N– is infinite and it is not clear how the numbers derive from the individual cases. In statistical or frequency accounts of probability there is often a link between the proposition whose probability is in question and an ensemble of actual cases. If I buy a new car of a certain make, and of this model 7% have broken down in their first year, then it is reasonable to conclude in the absence of further information that there is a 7% chance my car will break down in its first year. The class from which this proposition derives its probability is a class of actually existing cars. In the case of our Napoleon example, there is not a range of actual Napoleons of which a certain number win their Waterloos, but only one actual Napoleon. That is why to give a probability to his winning Waterloo we need to expand the horizon of our objects of comparison to include objects that do not exist, but (we suppose) could have done so. There is no point in bringing in impossible objects, but we do need a wide range of alternatives to ground the degree of
probability. This kind of idea is familiar from probability theory, and in Meinong it is applied quite consciously and clearly.

He does have the resources to deal with it. In some cases we will take our class of completions to comprise only \textit{actual} objects sharing some incomplete core with our chosen case – this is like the new car case; in others we will want to allow non-actual completions as well, that is, complete and consistent objects which however do not exist, corresponding to the tradition notion of \textit{possibilia}. He is aware that not all cases where a probability can be assigned are members of large classes where probability merely reflects statistics, but that one-off cases can be ascribed modal properties, including probabilities, as well, by adverting to suitable incomplete objects impled in the things in question. Meinong is well aware of the distinction between \textit{a priori} and \textit{a posteriori} grounds for the truth-values of modal expressions, and alludes to them in various places, but his account falls short of being systematic.

There is of course a measure of selection involved in choosing the incomplete object about which to weave our variations. We can let \(N\)– change to the extent of keeping Grouchy’s forces near at hand and able to participate in the battle, or we can let him decide to attack earlier, and the probabilities will change. If we vary not \(N\)– but circumstantial factors, for example if we subtract the heavy rain of 17 June which caused Napoleon to delay the attack, if we let transport difficulties delay the Prussian arrival on the field by two hours, and so on, we encounter all the “what if”s of delicately balanced historical events, and shift the probabilities again. There is in all this idea of variation and degrees of possibility a tacit assumption of the form “other things being equal”, on which Meinong does not focus, being concerned principally with simple cases of properties of individual objects.

6. Inhesivity

There is a standard notion of necessity, that a proposition is necessarily true or an objective necessarily obtains if and only if its negation or contradictory opposite is impossible. Meinong is aware of this and has no objection to it in principle. His main concern however is that it is only applicable to \textit{a priori} modality, whereas he is interested in modality as applied to the real world and real cases, where empirical factors intrude. For this reason, while he acknowledges the idea of what he calls a “line of possibility” (\textit{Möglichkeitslinie}) stretching between necessity at the top end and
impossibility at the other, he is more interested in the idea of a line between factuality at the top and unfactuality at the bottom, because this is more usefully applicable to real situations, where the “best case” of factuality obtains not because of the logical impossibility of the opposite case. He is intent on capturing those notions of necessity and possibility which are empirical, physical, real, psychological and so on. But simply to take factuality or truth as the best case is inappropriate because its opposite is unfactuality or falsehood and that alone does not merit the epithet ‘impossible’. He therefore looks for something else to warrant the idea of a “line of possibility” stretching from factuality to unfactuality, and finds it in the idea of “intelligible” factuality or unfactuality, the sort of factuality or unfactuality that we might describe with the words “it’s no accident that” or “we can see why”. If I know my friend well, I can predict for sure how he will react in a certain situation, though no one would say he is compelled to act thus or that he is conforming to a law or rule in so doing. Rather it’s “like him”, and I understand why he did it.

Meinong says in such a case that the predicate true of my friend is true not by chance but inhesively, and speaks then of the inhesive factuality of the resulting objective. This is contrasted with the case where something has a property as it were by mere chance, that it is now sunny, that Julius Caesar was murdered, that Napoleon delayed his attack until after 11 a.m. In these cases Meinong says the factuality is (merely) adhesive. The idea is then this: that the line of possibility stretches between inhesive factuality and inhesive unfactuality. So it is not just adventitious that Napoleon (understood via N–) could have won Waterloo: it was in him to have been able to win it, but it was not in him either to be sure to win it or to be sure to lose it. If S is inhesively P or S is inhesively not P then its being P or not P is not just by chance. If S is adhesively P or adhesively not P then it is one or the other by chance, but that it can be one or the other is not by chance. S is inhesively neither inhesively P nor inhesively not P. Possibility is inhesive subfactuality.

The key idea of inhesivity is by no means clear, and unfortunately Meinong does not spend a great deal of effort in analysing or elucidating it. Nor is it clear that the introduction of this additional distinctive element represents a step forward in the analysis of the concept of modality, because the difference between mere or adhesive factuality on the one hand and inhesive factuality on the other is itself a modal distinction. To put it in more traditional terms: if we take any (actual) individual and consider the properties he/she/it has inhesively, we arrive at something very like the traditional idea of an essence,
which consists of those properties the individual could not lack and still exist or be that individual. We might allow “harder” or “softer” notions of inhesivity and thereby of essence, as appears to be Meinong’s wish, but then we should always remain with a single strength in any one context on pain of changing the subject. The point remains that the elucidation of modality is shifted to another modal notion, and in view of its relative unfamiliarity it may be queried how successful a move this is, particularly as in a wider context we need to consider relational and complex propositions.

An interesting consequence of Meinong’s choice of inhesively factuality for his notion of necessity is that he thereby denies that there is a kind of factuality above ordinary factuality. An inhesively factual objective is factual (true) for a reason somehow inherent in it, but it does not have a “better” kind or higher dignity of truth than any other truth. This point of view renders Meinong’s object theory uncongenial to platonism. For platonists the being of the forms is a higher kind of being than that of mutable things, whereas while for Meinong there is a difference between things in space and time which are real, and objectives and mathematical objects which are ideal, the latter, if they have being, do not have a “better” kind of being than you or I: subsistence is simply different from real existence. In particular there is no thought anywhere in Meinong that any object might be real and exist of necessity, and his distinction between nuclear and extra-nuclear properties renders it unavailing to attempt any ontological argument for the existence or even subsistence of a perfect being out of its own nature, since being and existence are extra-nuclear properties and not part of anything’s nature. This is Meinong’s way of accommodating Kant’s insight that “Being is not a real predicate.”

7. A Note on Logic

For complete objects, and also for incomplete objects considered in themselves, there holds a principle of logical bivalence, whereby every objective about them is either factual or unfactual, tertium non datur. In the case of incomplete objects however we may consider them not just in themselves but in respect to their completions, as above. Taking the three kinds of case as above, we may say that the objective that N− is X is (derivatively) factual in the first case, unfactual in the second, and derivatively subfactual in the third. We may also ascribe it a degree of factuality in the range $0 \leq p \leq 1$.
What this means is that, for the particular case of the propositions which are possible the principle of logical bivalence is rejected, and Meinong is perfectly frank and willing to do this. Some propositions are possible and their corresponding objectives are subfactual. Counting unincreasable possibility as a third logical value, this gives a three-valued logic. Counting all the degrees of increasable possibility it gives an infinite-valued logic. So in this limited but important sense, Meinong is a pioneer of many-valued logic, and in particular of three-valued and infinite-valued or fuzzy logic. He himself was not a logician and did not pursue the idea, but others did. One who did, and who was almost certainly influenced by Meinong in so doing, was the principal founder of many-valued logic Jan Łukasiewicz, who visited Meinong in Graz in 1908 and 1909 while on a research scholarship, and who reported back to Poland that Meinong’s incomplete objects made it likely that the principle of excluded middle was not universal in application. It is clearly no accident – it is we might say inhesive in the situation – that while in Graz Łukasiewicz worked on both probability and on the status of the traditional Aristotelian laws of thought, with an eye to discerning how the status of contingent propositions such as those about future actions of free agents might or might not fit into classical bivalent ways of thinking. The breakthrough came for him a few years later, with the development of three-valued logic in 1917 and that of infinite-valued logic in 1922. His understanding of the relationship between these was however exactly that of Meinong: there is either plain possibility or there is gradable possibility. The seeds of many-valued logic were germinated in the Graz greenhouse.

8. Conclusion

Meinong’s account of modality is quite different from other accounts. Firmly distinguishing subjective from objective aspects, on the objective side he has neither possible worlds nor any of the other exotica of more recent theories, while his work is firmly anchored in his already existing theory of objects and objectives, of which is represents both an elaboration and an extension. He is firmly opposed to any reduction of modal notions to others such as those of linguistics, mathematics or psychology. He is deeply concerned to integrate his account of modality in general with that of probability, in both its objective and subjective senses, and this to my of thinking is a positive feature of his theory. His views are lacking in logical sophistication, and his exposition of them is
rambling and frequently tedious. But there are definitely reasons not to forget his contribution, not for the usually cited (and generally ignorant) reasons that Meinong’s views are so absurd that they should serve as fearful reminders to others, but because they embody fresh insights which can be farmed for future cognitive fodder.

REFERENCES

