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Bob Geroch’s General Relativity from A to B is, as its title suggests, an 
elementary book — the first word, rather than the last, on General Relativity 
(GR). This, I take it, is what makes the richness of the book so remarkable. As 
Geroch says in his preface, this book is not ―a view from below […] of a tower 
shrouded in mystery‖. Instead, it shows GR as it «actually works» (p. VII). 
Geroch reveals the nuts and bolts of the theory without getting bogged down 
in, or even introducing, the often complicated formalism of differential 
geometry. The book is a proof of concept: Geroch ably demonstrates that a 
detailed, precise, and yet fully accessible introduction to an advanced topic in 
physics is possible after all. One often hears authors and physicists, especially 
in the popular press, note the beauty or elegance of GR, and there is much in 
the structure of the theory to support such judgments. But what Geroch 
reminds us is that GR is also a simple theory. An advanced high school student 
could walk away from this book fully equipped to make predictions about the 
most exotic space-times one might think of. 

General Relativity from A to B is not the kind of book that one responds to, 
in the sense of argue with. There is little to agree with or disagree with, here. It 
is also a recent enough book that little is to be gleaned from studying its 
historical context. Instead, my focus in this commentary will be on the feature 
of Geroch’s discussion that permits him to say so very much, so precisely, but 
with essentially no technical formalism: the space-time diagram. There are 
three modest remarks that I want to make about Geroch’s use of space-time 
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essay suggested in footnote 6 here. 
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diagrams, which I will approach in turn. I do not take any of these remarks to 
be shocking or groundbreaking. I simply want to draw attention to how 
powerful these diagrams can be, both as computational tools and as a way of 
probing at least some foundational issues in gravitational theories.  

The first remark is methodological, concerning how one should approach 
problems in GR. In solving such problems, Geroch writes: 

The pattern in every case is the same. One first elicits a detailed statement of 
the actual physical experiment to be performed, complete with the 
measurements to be taken. One then represents the experiment by a space-
time diagram. (pp. 155-156)  

One then goes on to solve the problem, using the space-time diagram thus 
constructed. It is easy to take this suggestion in some limited way, perhaps as 
follows: when first approaching elementary problems, one should construct a 
space-time diagram. More difficult problems (naturally) should be approached 
using more sophisticated methods. But to take the suggestion in this way 
seems to me to be a mistake. I think Geroch has something more general in 
mind. 

Geroch uses space-time diagrams in the fashion common to elementary 
treatments of relativity theory: he uses them to describe simple experiments in 
which different observers measure lengths, or durations, or send signals to 
each other. But he also uses them, even more effectively, in addressing the most 
advanced topic in the book: the physics of black holes. Here he proceeds 
exactly as he recommends in the quoted passage. He begins by giving a general 
account of the space-time under consideration, by describing 
(diagrammatically) the light cone structure of the Schwarzschild solution. He 
then describes a number of experiments that one might perform: he imagines 
an observer traveling towards the event horizon of the black hole and then 
turning back; an observer passing through the event horizon; an observer 
sending and receiving signals as she approaches the event horizon; etc. 
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Illustration 1: An example of a space-time diagram from the black hole chapter of 
General Relativity from A to B. The boundary of the cylinder represents the event-
horizon of the singularity, represented by the line at the center of the cylinder. At 
point u, the observer with wordline C passes the event horizon. One can see the 
light cones along C lean increasingly towards the singularity so that at u, there is no 
future directed timelike curve that leaves the cylinder. Geroch uses such diagrams 
to explain the physics of complicated space-times without introducing detailed 
formalism. 
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In each case, rather than proceed via tensor analysis, he simply draws a space-
time diagram, from which (with no hand waving at all), he describes the 
predicted results of the experiment in detail. He does not produce detailed 
numerical predictions in this chapter, though as he points out he easily could 
by including a little more metrical information in the diagrams. 

My point, here, is not to suggest that space-time diagrams are in any way 
obscure or little-known tools of GR. They aren’t. Everyone who has ever taken 
a course in GR has drawn a space-time diagram. What I am trying to 
emphasize, rather, is how broadly useful these diagrams can be, beyond the 
elementary and expository purposes to which they are often limited. These 
diagrams capture an immense amount of physics, in any physical situation to 
which it is appropriate to apply GR. And unlike many other visualization 
techniques in physics, such as Feynman diagrams or atomic level diagrams, 
space-time diagrams capture the essential geometrical properties of the 
physical configuration they represent. In other words, space-time diagrams 
actually support the kind of geometrical reasoning that they invite. 

The present point is particularly useful in the context of some (old1) 
foundational questions in GR. One of the most striking features of Geroch’s 
book, especially for a popular account of GR, is what expressions do not 
appear. (This is the second remark alluded to above.) The word ―paradox‖ does 
not appear in the book; ―paradoxical‖ appears once, on p. 146, in the context 
of insisting that there is nothing shocking associated with disagreements 
between observers concerning judgments of distance or length. Other 
expressions that one might expect to find in such a book, but which do not 
appear here, are ―length contraction‖ and ―time dilation‖. Geroch addresses 
the determinations of elapsed time, simultaneity, and length made by different 
observers in full calculational detail (here he does include numerical 
treatments). But he does so entirely in terms of space-time diagrams, from 
which perspective it simply does not make sense to talk about things like length 
contraction or time dilation as concrete physical phenomena. It is a mistake to 
approach GR by thinking of rods stretching or contracting, or of the gear 

 

1 Such foundational problems are old mostly because the space-time perspective that Geroch 
advocates (or, perhaps, embodies) has been effective in resolving them. But one should not forget that 
many so-called ―paradoxes‖ of GR greatly vexed physicists and philosophers in the early decades of the 
theory. They remain enshrined in most introductory texts on the subject. 
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wheels of a watch turning more or less slowly.2  
The alternative view that Geroch recommends, the view suggested by 

taking space-time diagrams seriously, is one in which different observers make 
different determinations of certain quantities or relations, such as length or 
simultaneity, by virtue of the structure of space-time and the measurement 
devices available to them. Take the well-known ―twin paradox‖, wherein an 
astronaut leaves earth, travels for some distance at a high speed, and then 
returns to earth. When he lands, he is younger than his twin, who remained on 
earth the whole time.3 Beginning with just a space-time diagram, one can easily 
determine how many ticks an earth-bound observer would attribute to an 
observer on a rocketship’s clock (say), and vice-versa, without ever mentioning 
time dilation or proper time or anything of the sort. The two observers are 
represented by two different timelike curves in spacetime and they make 
determinations using various instruments. Using a space-time diagram, one 
can predict what these determinations will be. Often these observers’ 
determinations will differ. But that is the end of the story: it should be no 
surprise, once the details of the measurements are spelled out 
diagrammatically, that they yield different results. There is simply no occasion 
for paradox to enter in. In fact, once one is accustomed to thinking about such 
problems geometrically, it is difficult to reconstruct what the paradox was 
supposed to be.4, 5 
 

2 Emphasizing this way of thinking about the physics of GR is particularly salient, as Geroch’s 
perspective is not entirely uncontroversial these days. Harvey Brown, in his recent book Physical 
Relativity (2005), seems to suggest that the dynamics of (for instance) rods stretching and contracting 
are crucial for understanding relativity theory. 

3 Geroch does not treat this example by name; I bring it up only to show how on the geometric 
way of thinking, the paradox never has time to arise. 

4 Indeed, I do not think I have reconstructed the paradox here. I take it the difficulty is supposed 
to be something like as follows: from the perspective of the astronaut, earth recedes at a high speed for 
some time, and then changes directions and begins to approach again. And so, by some sort of 
symmetry principle, one is supposed to reason that the twin on earth ought to be younger. But they 
cannot both be younger than the other, and thus the paradox. Treating the problem geometrically, it is 
clear that there can be no such symmetry principle. The curves representing the two twins are not 
equivalent: they have different lengths. 

5 J. S. Bell (1987), in an essay called ―How to teach special relativity‖ suggests another ―paradox‖ 
of special relativity (often called the Bell Spaceship Paradox in his honor). One considers two 
spaceships initially drifting freely without any relative motion. The spaceships are assumed to be 
connected by a fragile string. At some mutually agreed upon time (this makes sense, since the 
spaceships initially have parallel inertial worldlines), both ships begin to accelerate uniformly and 
identically. The question is whether the string breaks. Bell reports an argument with a «distinguished 



264  Humana.Mente – Issue 13 – April 2010  

 

 

The final remark I want to make concerning space-time diagrams and 
Geroch’s presentation is this. One often sees space-time diagrams in 
introductory treatments of GR, but Geroch begins by developing the space-
time diagram as a way of understanding classical space-times.6 Treating 
classical theories from the perspective of space-time is much less common; as 
Geroch puts it, «in the Galilean view, space-time is a luxury; in relativity, a 
necessity» (p. 220). Yet this luxury is worth the indulgence. For one, treating 
classical theories, such as Newtonian theory (which has a Galilean space-time 
structure), in terms of four-dimensional space-time and space-time diagrams 
allows one to directly compare the mathematical structures of Newtonian and 
relativistic physics. Geroch develops classical space-times for just this purpose: 
he introduces relativistic space-times only after helping the reader to develop 
her everyday, classical intuitions in terms of space-time. Throughout the 
second part of the book, where he introduces GR, he reminds the reader of 
how to understand the differences between relativistic and classical space-
times. 

It is possible to go considerably further in developing Newtonian physics in 
terms of the geometrical structure of space-time than Geroch does, on account 
of the level at which he presents the material. In the early 1920s, in a lecture 
series at École Normale Supérieure, Élie Cartan recast Newtonian gravitation 
in the language of differential geometry. The resulting theory, now known as 
Newton-Cartan theory or ―geometrized‖ Newtonian gravitation, is strikingly 
similar to GR: once again, the geometrical structure of spacetime depends on 

 

experimental physicist» (Bell 1987, p. 68) at the Swiss accelerator laboratory CERN who believed that 
the string would not break. (Bell argued that it would.) To arbitrate, Bell and the experimentalist 
informally canvased the CERN theory division and discovered a consensus, at least initially, that the 
experimentalist was correct. Once the theorists spent time with the problem, however, they came to 
agree with Bell. Bell’s own interpretation of these events is that many physicists have not recognized 
the physical importance of Lorentz-Fitzgerald length contraction. But an alternative interpretation, 
indirectly suggested by Geroch’s book, is that Bell’s colleagues at CERN would have done well to 
begin with a space-time diagram! Once one draws the appropriate diagram and considers the length of 
the string as determined by an observer co-moving with either of the string’s ends, it is easy to see that 
the string stretches (and thus breaks). 

6 Geroch considers two kinds of classical space-times: Aristotelian space-time and Galilean 
space-time. An Aristotelian space-time, for Geroch, is one in which space-time has an absolute, fixed 
standard of rest and in which space has a fixed origin; a Galilean space-time is one in which all 
observers agree on determinations of simultaneity, but where there is no fixed standard of rest and 
thus no origin. For a more technical treatment of these and a variety of other classical space-times, see 
Earman (1989, ch. 2). 
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the distribution of mass within spacetime; conversely, gravitational effects are 
seen to be manifestations of the resulting geometry. It is possible to show that 
there is a rigorous sense in which Newton-Cartan theory is a limiting case of 
GR (where the limit consists in allowing the lightcone at every point to expand 
maximally). With the full Newton-Cartan theory in hand, one can extend 
Geroch’s comparative project and say precisely, in a wide variety of cases, how 
GR and classical physics relate to one another.7  

Even without the fully geometrized gravitational structure, however, there 
is much to recommend looking at classical physics from the space-time 
perspective, especially to philosophers. Howard Stein (1967), for instance, has 
brought a geometrical, space-time understanding of classical physics to bear 
on historical questions concerning Newton, Leibniz, and Huygens’ 
interpretations of Newton’s theory. Earman (1989), meanwhile, surveys 
historical debates on absolute and relational theories of space from a firmly 
space-time perspective. Stein and Earman’s work shows, I think, that the 
space-time perspective is as helpful in understanding and even resolving 
foundational problems in classical physics as it is in relativistic physics. 

General Relativity from A to B is not intended as a philosophical work; nor 
is it meant as a text for specialists. And yet it serves as a potent reminder to both 
the physicist and the philosopher of physics of the power of a certain way of 
thinking about GR—and even classical physics—at both the calculational and 
foundational levels. 
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